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Preamble

• Problem Statement: We consider the problem of accurate
online contour-based object tracking in the face of
uncertainty caused by imaging noise and
approximate/imperfect segmentation models.

• Thesis: The construction of estimators for temporally
evolving curves will lead to improved performance for
visual tracking systems.
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Our approach to Visual Tracking
We propose the following observer structure:������� �������	��
��� �
������

mx

x −

x̂

Such observer design presents several benefits:

• may be agnostic to measurement strategies.

• analyzes shape in a non-parametrized setting.

• provides modularity of the algorithmic blocks.

• increases robustness.
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State-Space Representations
The state of the target is described by a pose state which
represents the ensemble movement and a shape state which
represents the local deformations.

group

shape

Figure: Group/Shape Decomposition.
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Correction Models

• Linear finite-dimensional systems are updated according to:

[
x

ẋ

]+

=

[
x

ẋ

]−

+

(
K11 K12

K21 K22

)

·
[
err(xm, x−)
err(ẋm, ẋ−)

]

(1)

• The group and its velocity are then updated using equation
(1).

• The shape variable being infinite-dimensional, standard
update schemes are inappropriate.
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Implicit Shape Representations
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Probabilistic Contour Observer

• Propose: observer for online visual contour tracking.

• Contributions:

1. formulates tracking as decoupled observer designs on group
and shape.

2. incorporates dynamical prediction models for shape space.

3. defines a novel update method suited to shape descriptor.

4. quantitatively validates the system’s performance.
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Dynamical Prediction Models

The prediction model uses the state estimate from the previous
frame to produce an estimate at the current frame.

Constant group
velocity

{

ġ = ξ, ξ̇ = 0

Ṗ = 0

Constant velocity

{

ġ = ξ, ξ̇ = 0

Ṗ +∇P ·Θ = 0, Θ̇ = 0

Advected velocity

{

ġ = ξ, ξ̇ = 0

Ṗ +∇P ·Θ = 0, Θ̇ +∇Θ ·Θ = 0

9 / 58



Introduction Probabilistic Contour Observer Optimal Contour Estimation Local Optimal Filters Conclusion

Measurement Model

Measurement involves the determination of the four substates
(gm, ξm, Pm,Θm):

• pose gm is obtained through target localization.

• shape Pm is given by segmentation.

• shape velocity Θm can be measured by computing the
optical flow between two subsequent aligned images.

• group velocity ξm is not available for measurement.
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Correction Models

• Nonlocal shape correction can be performed by defining an
error vector field Xerr(P

−, Pm), whose flow results in a
homotopy: P+ = ΦK11

Xerr
(P−).

• Correction on the shape can also be achieved through a
weighted geometric averaging procedure:

P+(r) =
(
P−(r)

)1−K11(r) · (Pm(r))K11(r) .

• Example of shape interpolation.
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Experimental setup

• Conduct experiments with real imagery to assess the
observer’s performance.

• Compare to other visual tracking techniques.

• Manually segment and determine track point for ground
truth.

• Error metrics:

1. pose: L2 error.
2. shape: number of misclassified pixels (NMP), Hausdorff and

Sobolev distances.
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Tracking Experiments: Sample Video 1

 43  96 156
Frame

(a) Bayesian

121  56 168
Frame

(b) Deformotion

 54 100 181
Frame

(c) Shape

 42  89 156
Frame

(d) Observer

Figure: Sample estimates.

 
Metric \ Algorithm Bayesian AC Deformotion Shape Observer 

Trackpt error     (L2/L�) 16.6  / 24.4 11.5 / 52.3 7.9 / 16.0 5.4 / 12.3 8.0 / 15.5 

NMP               (med/max) 253 / 1420 288 / 1328 202 / 755 299 / 536 171 / 508 

Hausdorff        (med/max) 10.2 / 35.0 30.0 / � 7.8 / 26.2 10.9 / 25.8 7.7 / 27.4 

Sobolev          (med/max) 8.2 / 70.6 100.0 / � 5.8 / 35.3 11.7 / 38.1 6.5 / 81.8 

# Frames tracked 200 150 200 200 200 

Table: Error metrics.
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Tracking Experiments: Sample Video 2

 26 119  67
Frame

(a) Bayesian

  5  96 107
Frame

(b) AC

 92 127  68
Frame

(c) Deformotion

 50   2 108
Frame

(d) Observer

Figure: Sample estimates.

 
Metric \ Algorithm Bayesian AC Deformotion Shape Observer 

Trackpt error     (L2/L�) 8.6 / 13.2 2.8 / 7.0 2.6 / 12.3 5.6 / 15.8 2.7 / 5.8 

NMP               (med/max) 251 / 969 244 / 549 248 / 769 575 / 833 279 / 478 

Hausdorff        (med/max) 10.9 / 18.4 11.1 / 19.2 12.3 / 19.7 12.0 / 22.5 14.6 / 20.7 

Sobolev          (med/max) 8.2 / 52.9 12.9 / 95.8 11.9 / 46.7 13.2 / 43.9 12.9 / 26.9 

# Frames tracked 477 478 477 475 478 

 

Table: Error metrics.
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Concluding Remarks

• Proposed: a recursive dynamic filter for tracking.

• Results:

1. Achieves temporal consistency

2. Equal to or more effective than other online, recursive
methods.

3. Does not require training.

4. Low computational cost.

• Remaining: Optimal gain strategy for the filtering.
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Optimal Contour Estimation

• Propose: derivation of an optimal contour estimator.

• Contributions:

1. simplifies infinite-dimensional filtering problem into series of
point-wise estimation tasks.

2. derives an optimal estimator.

3. quantitatively validates the estimator’s performance.
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Measurement Strategy: Bayesian
Segmentation

• Image is composed of several classes.

• Each class is described by a likelihood distribution.

• Each pixel has an a priori probability of being assigned to
a given class.

• Classifier selects the most likely class for a pixel through a
maximum a posteriori approach using Bayes’ rule:

Pr(ci = c|vi = v) =
Pr(vi = v|ci = c) Pr(ci = c)

∑

γ

Pr(vi = v|ci = γ) Pr(ci = γ)
.
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Measurement Strategy: Bayesian
Segmentation
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Figure: Likelihood Generation for Bayesian Segmentation
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Multiplicative state uncertainty

• Consider an image I taking values in R.

• Pixel intensity corrupted by additive noise ν following
N (0, σ2

ν).

• Generation of likelihood ζ (x, y) at pixel I(x, y) yields:

ζ (x, y) =
√
c · e−

1
2

(

I(x,y)+ν−µF
σF

)2

.
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Multiplicative state uncertainty

• When expanded, the measured classification likelihood is:

ζ (x, y) =
√
c · e−

1
2

(

I(x,y)−µF
σF

)2

︸ ︷︷ ︸

ρ(x,y)

· e−
1
2

(

ν
σF

)2

· e
−

(

ν (I(x,y)−µF )
σ2
F

)

︸ ︷︷ ︸

η(x,y)

• ρ(x, y) is the true classification likelihood.

• η(x, y) is the classification measurement noise.

• Additive image noise =⇒ Multiplicative state uncertainty

• Use of an appropriate estimator can resolve multiplicative
uncertainty.
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The geometric averaging update model

• In the log-space associated to the densities:

log(ζ) = log(ρ) + log(η).

• Applying a constant gain, linear filtering strategy to filter
the noise leads to:

log(ρ̂+) = log(ρ̂−) +K
[
log(ζ)− log(ρ̂−)

]
.

• Rearranging the terms gives

log(ρ̂+) = (1−K) log(ρ̂−) +K log(ζ).

• Finally, we return to the densities by exponentiating:

ρ̂+ =
(
ρ̂−

)1−K
(ζ)K .
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The prediction model

• The prediction step can be chosen to be static (propagation
of the previous state estimate) or dynamical, given prior
knowledge on the state evolution:

ρ̂−t = f(ρ̂+t−1),

where f represents the state transition function.

• When no sufficient prior information of the state evolution
is known, the generic static prediction model can be used
(f = id).
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Noise statistics estimation

• Correlation between the likelihood and the measurement
noise:

S = E (log (ρ) · log (η)) = 0.

• Since I(r)−µF

σF
and ν(r) follow normal distributions N (0, 1)

and N (0, σ2
ν) respectively, the measurement error

covariance is derived:

R = E
(

[log(η)]2
)

=
1

2

(
σν

σF

)4

+

(
σν

σF

)2

.
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Error Covariance Update

• Error variance P̂+
t defined as E

([
log(ρt)− log(ρ̂+t )

]2
)

.

• It is a measure of the accuracy of the estimate ρ̂+t and
needs to be estimated at the prediction step and updated
at the correction step:

P̂+
t = E

([
log(ρt)− log(ρ̂+t )

]2
)

= E
([

log(ρt)− (1−Kt) log(ρ̂t
−)−Kt log(ζt)

]2
)

= E
([

(1−Kt)
[
log(ρt)− log(ρ̂−t )

]
−Kt log(ηt)

]2
)

= (1−Kt)
2
P̂−
t +K2

t R.
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Error Covariance Prediction

• Assume a static prediction model with multiplicative
process noise τ , i.e. (ρ̂−t = ρ̂+t−1 · τt).

• Further assume the process noise to be independent from
the observation noise.

• The predicted error variance P̂−
t is then given by:

P̂−
t = E

([
log(ρt)− log(ρ̂−t )

]2
)

= E
([

log(ρt−1)− log(ρ̂+t−1)
]2
)

+ E
(

[log(τt)]
2
)

= P̂+
t−1 +Q,

where Q = E
(

[log(τ)]2
)

represents the process error

variance.
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Optimal state estimation

• In the log-space associated to the densities, the problem
considered is one of point-wise linear filtering for a system
facing additive noise.

• Thus, the optimal selection of the gain Kt is given by the
Kalman gain: Kt = P̂−

t (P̂−
t +R)−1.

Table: Filtering equations for the visual tracking system

Prediction







ρ̂
−

t = ρ̂
+

t−1

P̂
−

t = P̂
+

t−1
+ Q

Update



















Kt = P̂
−

t (P̂−

t + R)−1

ρ̂
+
t =

(

ρ̂
−

t

)

1−Kt
· (ζt)

Kt

P̂
+
t = (1 − Kt)

2 P̂
−

t + K2
t R
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Algorithm and implementation

The optimal estimation algorithm can be summarized as
follows:

• Estimate the additive imaging noise offline.

• For every pixel, run two estimators to filter the foreground
and background likelihoods (ρ̂F (r) and ρ̂B(r)):

1. obtain predictions with corresponding equations in Table 3.

2. obtain measurement by performing Bayesian segmentation.

3. obtain updates with corresponding equations in Table 3.

• The estimated classification probability field is obtained by
normalization: ρ̂F

ρ̂F+ρ̂B
.
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Extension to vector-valued images

• Similarly to the scalar case, the measured likelihood can be
expressed as:

ζ(r) =

ρ
︷ ︸︸ ︷√
∆ · e− 1

2
(I−µF )T Σ−1

F
(I−µF ) ·

e−
1
2
(I−µF )T Σ−1

F
ν · e− 1

2
νT Σ−1

F
(I−µF ) · e− 1

2
νT Σ−1

F
ν

︸ ︷︷ ︸

η

.

• The estimator retains the same structure, with the
measurement error variance now given in the multivariate
case by:

R =
1

2
Tr

[(
ΣνΣ

−1
F

)2
]

+ Tr
[
Σν · Σ−1

F

]
.
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Modeling complex appearance models

The work can be extended to handle complex target and
background appearance models by representing them with
Gaussian mixture models.
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Distributed Filtering for Spatial Consistency

• Move beyond point-wise filtering.

• Assume that a given pixel and its m closest neighbors
capture the same visual phenemonon, only from different
but close viewpoints.

Figure: Network topology for distributed filtering (4-connectivity).
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Distributed Filtering for Spatial Consistency

• Filtering equations:

Table: Filtering equations using the information form

Prediction







ρ̂
−

t = ρ̂
+

t−1

P̂
−

t = P̂
+

t−1
+ Q

Update



















(

P̃
+
t

)

−1
= R−1 +

(

P̂
−

t

)

−1

Kt = P̃
+
t · R−1

ρ̃
+
t =

(

ρ̂
−

t

)

1−Kt
· (ζt)

Kt

• Assimilation equations:






(

P̂
+

t,i

)

−1
=

(

P̂
−

t,i

)

−1
+

m
∑

j=1

[

(

P̃
−

t,j

)

−1
−

(

P̂
−

t,j

)

−1
]

ρ̂
+

t,i
=

(

ρ̂
−

t,i

)P̂
+
t,i

·P̂
−

t,i
·

m
∏

j=1

(

ρ̃t,j
)P̂

+
t,i

·P̃t,j

(

ρ̂
−

t,j

)P̂
+
t,i

·P̂
−

t,j
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Experimental setup

• Conduct experiments with real imagery to assess
performance.

• Compare performance against fixed-gain filtering strategies
and other visual tracking techniques.

• Ground truth through manual segmentations.

• Error metric given by the NMP.

32 / 58



Introduction Probabilistic Contour Observer Optimal Contour Estimation Local Optimal Filters Conclusion

Optimality Experiments: Grayscale

(a) Original (b) σν = 25 (c) σν = 100
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Gain K = 0.3
Gain K = 0.1
Optimal Gain

(d) NMP vs time (σν = 25)
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(e) NMP vs time (σν = 100)
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Optimality Experiments: Color

(f) Original (g) Σν = 10 · 1 (h) Σν = 100 · 1
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(i) NMP vs time (Σν = 100 · 1)
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(j) NMP vs time (Σν = 200 · 1)
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Comparative Performance

(a) Sample Frame
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Bayesian
AC
Deformotion
Optimal

(b) NMP error metric

 64  94 120
Frame

(c) Truth

 64  94 120
Frame

(d) Bayesian

 64  94 120
Frame

(e) Deformotion

 64  94 120
Frame

(f) Optimal

Figure: Noisy Synthetic Sequence.
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Concluding Remarks

• Proposed: an optimal contour estimator.

• Results:

1. Formally tied optimal gain to measurable uncertainty on
image data.

2. Does not require manual gain tuning.

3. Able to handle severe noise perturbations.

4. Compares favorably with other tracking methods.
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Local Optimal Filters

• Propose: local optimal filters for closed curve filtering.

• Contributions:

1. introduces a local, linear description for planar curve
variation and curve uncertainty.

2. derives mechanisms for estimating the optimal filtering
gain, given quantitative uncertainty levels.

3. quantitatively validates the filter’s performance.

• Shape representation: signed distance function.
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Transverse curve coordinates

• Correspondence trajectories:

Solve the Laplace equation ∆u = 0 (with boundary
conditions) to obtain a harmonic field. The corresponding
characteristic vector field is given by ∇u

||∇u|| .

Figure: Characteristic Error vector Field.
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Transverse curve coordinates

• Curve coordinate system:

Following the distance characteristics starting at a curve
point defines the local transverse coordinate system.

Figure: Transverse Coordinates.
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First-Order Curve Filtering

• Consider estimates Ĉ, Ĉ− of the true curve C and a
measurement Cm.

• Assume that measurements are independent from
predictions, i.e. Cov(Cm, Ĉ−) = 0.

• In point notation, the curve errors of the estimates are:

{

ê−(s) = x̂−(s)− x(s)

ê(s) = x̂(s)− x(s)

• The variances associated with the errors are:






P−(s) = E
(

[x̂−(s)− x(s)]
2
)

> 0

P (s) = E
(

[x̂(s)− x(s)]2
)

> 0
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First-Order Curve Filtering

• Assume that R(s) varies smoothly along the curve.

• The optimal selection of the gain K minimizes the error
covariance P (s) under the update model:

x̂(s) = x̂−(s) +K(x̂m(s)− x̂−(s))

• Given the setup, the optimal choice of K is given by the
Kalman gain:

K = P− (P− +R)−1

• The associated error variance is:

P+ = P− (1−K)
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Second-Order Curve Filtering

• First-order filtering strategy: absence of a dynamical
prediction model.

• Account for shape dynamics by considering both the
curve’s position and normal velocity: x(s) = [x(s), v(s)].

• Filter state also includes the curve covariance matrix
P : S1 → R

2x2.

• Second-order curve dynamics may be nonlinear.
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Dynamical Prediction Models

• Constant velocity model:

{

Ĉt = βN
β̂t = 0

⇐⇒






Ψ̂t =
ˆ̄β ·

∣
∣
∣

∣
∣
∣∇Ψ̂

∣
∣
∣

∣
∣
∣

ˆ̄βt = 0

• General purpose second-order model:

{

Ĉt = βN
β̂t =

(
1
2 β̂

2 + a
µ

)

κ

⇐⇒






Ψ̂t =
ˆ̄β ·

∣
∣
∣

∣
∣
∣∇Ψ̂

∣
∣
∣

∣
∣
∣

ˆ̄βt =
(
1
2
ˆ̄β2 + a

µ

)

∇ ·
(

∇Ψ̂

||∇Ψ̂||

)
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Dynamical Prediction Models
Using a first-order linear discrete approximation leads to the
covariance update:

P(s, t+∆t) = F · P(s, t) · FT +Q ·∆t.

• Constant velocity model:

F =

[
1 ∆t

0 1

]

.

• General purpose second-order model:

F ≈
[
1 ∆t

0 1 + βκ ∆t

]

.
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Update Model

• The optimal correction gain under the update law,

x+(s) = x− +K(xm − x−),

is K = P− (P− +R)
−1

.

• Decomposing the gain matrix K as:

K =

[
Kxx Kxv

Kvx Kvv

]

,

leads to the position update:

x̂+ = x̂− +Kxx ·
(
xm − x̂−

)
+Kxv ·

(
vm − v̂−

)
.
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Update Model

• The velocity is updated according to:

v̂+ = v̂− +Kvx ·
(
xm − x̂−

)
+Kvv ·

(
vm − v̂−

)
.

• The covariance update is:

P+ = (1−K) P−.

• Prior to covariance update, predicted and measured
covariances need to be transported to the updated curve
location where they can be compared.
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Static Filtering Experimentation

• First-order filter was applied to a noisy static sequence.

• Then used fixed-gain filtering strategies. With 0.05 gain
increments, a gain sweep (from 0.05 to 0.95) verified gain
optimality.
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Comparison to an actual 1D system

Evolution of the error for a true 1D system and for a simulated
static tracking scenario.
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Figure: Error comparison against a true 1D system.
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Tracking with the first-order filter

Figure:
Snapshot

 
Metric \ Algorithm AC Deformotion Shape Filter 

Group error     (L2/L�) 2.2 / 6.6 2.2 / 9.6 7.6 / 18.5 1.8 / 6.2 

NMP                 (avg/max) 78 / 202 72 / 172 87 / 160 63 / 111 

Mean Laplace  (avg/max) 1.0 / 3.7 0.9 / 3.1 1.2 / 2.6 0.7 / 1.3 

Max  Laplace   (avg/max) 2.9 / 8.9 2.3 / 7.9 3.4 / 8.4 2.0 / 3.5 

# Frames tracked 109 109 115 350 

 

Figure: Comparative error metrics.
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Figure: Sample estimates.
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Tracking with the second-order filter

(a) Snapshot
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(b) NMP
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(c) Smoothness
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Tracking with the second-order filter

(a) Snapshot
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(b) NMP
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(c) Smoothness
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Concluding Remarks

• Proposed: locally optimal curve filters.

• Results:

1. Provides a set of linear coordinate frames from which to
perform curve operations.

2. Incorporates dynamical models to deal with both rigid-body
and elastic objects.

3. Validates design with visual tracking experiments.

4. Able to estimate curve deformations in presence of image
disturbances and imperfect segmentation models.
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Geometric Avering for Statistical Methods

• Probability fields or confidence maps often used in
computer vision, machine learning, and signal processing.

• Even when not naturally defined, it is relatively simple to
generate one from existing similarity/distance maps.

• Performance is intimately linked to the SNR of the map.

• Application of a filtering procedure should then improve
the overall performance.
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Geometric Averaging for Ensemble Tracking

(h) ET (t=1) (i) ET (t=77) (j) ET (t=110)

(k) Filtered ET (l) Filtered ET (m) Filtered ET
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Conclusion

• Explored filtering schemes for dynamic curve estimation.

• Developed optimal curve estimation strategies for different
state-space representations:

1. probabilistic shape descriptor.
2. level set descriptor.

• Validated objectively the work using:

1. recorded imagery.
2. ground truth.
3. relevant error metrics.

• Provided an effective class of solutions to the visual
tracking problem.
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Potential research directions

• Robustify the estimators.

• Investigate methods to accurately model the uncertainty.

• Study the balance between shape constraints and filtering
schemes.

• Extend the ideas presented here beyond contour-based
tracking methods to other statistical methods.
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Thank you for your attention.

Questions?
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