
BETWEEN PASS/FAIL TEST PATTERNS AND STANDARD SUBJECTIVE TESTING: A 

NEW METHODOLOGY TO DESIGN TEST SETS AND GUIDELINES FOR VISUAL 

QUALITY SCORING 

 

J. E. Caviedes, M. Subedar, I.J. Ndiour, T. Lee, and N. Ahuja 

Intel Corporation 
 

ABSTRACT 

 

This paper presents a methodology for designing 

perceptually relevant, subjective visual metrics used to 

assess and quantify the performance of video-processing 

algorithms. For a given video processing algorithm being 

evaluated, the methodology involves determining a set of 

key picture attributes, their priorities, and the algorithmic 

failure modes with associated visual impact. A minimal set 

of input test clips featuring such attributes in a 

differentiable manner must be chosen, along with clear 

guidelines on how to assign quality scores to the outputs. 

An important property of the test set and scoring options is 

the matching of the performance curve of the algorithm 

which combines the relative importance of the test cases, 

the number of them, and the ability to define minimum 

acceptable scores for different use cases. Both the 

selection of perceptually relevant test clips, as well as the 

construction of unambiguous scoring guidelines to match 

the performance curve of the algorithm will be addressed 

in this article. 

 

1. INTRODUCTION 

 

Video quality assessment approaches can broadly be 

classified into two categories - subjective methods and 

objective methods. With either type of approach, the intent 

is to obtain a single numeric value that is representative of 

the quality of the video. Subjective methods typically 

involve scoring of the video by multiple human observers 

and aggregating their scores into a single number. By 

contrast, objective methods measure quality by either 

comparing the video to a supposedly ideal “reference” 

video (full-reference video quality metrics), or by 

attempting to measure quality directly from the video 

based on a perceptual model of the human visual system 

(no-reference quality metrics) ([1]-[3], and references 

therein). Objective metrics have the distinct advantage of 

being efficient to implement, possibly in real-time. 

Unfortunately, scores obtained by such methods generally 

do not correlate well with the quality perceived by humans 

[4]. In subjective methods, however, because the video is 

being assessed and scored by human observers, the scores 

obtained are known to be the best predictors and 

indicators of perceived visual quality. An important 

consideration in the design of a subjective evaluation 

methodology is the repeatability of scores obtained when 

the evaluation is performed either by different sets of 

observers, or at different points in time. In simple MOS 

(mean opinion score) based approaches, it is nearly 

impossible to achieve similar scores under multiple trials. 

This drawback may be addressed by adopting the DSCQS 

(double stimulus continuous quality scale) method of 

performing quality tests. In this method, viewers are 

shown pairs of video sequences, one of which serves as a 

reference, in a randomized order and are asked to rate the 

quality of each sequence in the pair. The difference 

between these two scores is then used to quantify changes 

in quality. If a MOS score is assigned to each clip, the 

resultant score is the widely used differential MOS 

(DMOS) metric. This method, though widely accepted as 

an accurate test method with little sensitivity to context 

effects, suffers from a practical problem of requiring a 

reference clip for scoring [5, 6].  

In this paper, a subjective approach to assess the 

quality performance of a video algorithm or video-

processing pipe is presented that attempts to address the 

limitations of the prevalent VQA methods described 

above. The method involves choosing a minimal set of 

input test clips along with clear guidelines on how to 

assign quality scores to the outputs. This not only 

eliminates the need for reference outputs, but also 

minimizes the variability of scores obtained across 

multiple trials as the scores are assigned in accordance 

with the provided guidelines rather than arbitrarily by each 

individual observer.  

The concept of using test sets to evaluate visual quality 

of video algorithms is, by itself, not new. Test-suites, such 

as HQV [7], exist and have been used for this purpose. 

Such method, however, does not have a clear model to 

combine pass/fail tests with continuous visual performance 

tests of varying criticality. What is addressed here is the 

methodology by which such tests and scoring guidelines 

should be designed such that the resultant score obtained 

by using this set is reflective of perceived visual quality. 

This is achieved by choosing each clip such that it will 



produce a specific visual impact by exercising one or more 

key failure modes of the algorithm- or pipe-under-test. 

Details of this process are described in Section 2. While 

the total score serves as an indication of overall quality of 

algorithm being tested, examining the scores for each 

individual clip allows for a more fine-grained assessment 

of specific strengths or weaknesses of the algorithm. The 

method presented here can be used both for standalone 

quality evaluation of a single algorithm and for comparing 

quality of several algorithms attempting to perform the 

same processing task. A specific example of how to apply 

this process to design a test set for upscaling algorithms is 

described in Section 3. Conclusions are presented in 

Section 4. 

 

2. DESIGN OF TEST-SET AND SCORING 

GUIDELINES 

 

The proposed subjective benchmarking metric is described 

in this section. The subjective benchmarking metric 

includes a test suite, along with well-defined scoring 

guidelines. The steps involved in developing the metric 

are given in Figure 1. 

 

2.1. Define video processing feature under test 

 

The video processing feature under evaluation needs to be 

chosen. This feature can be one algorithm, or a 

combination of algorithms, or a complete system which 

includes all the processing blocks of a video chain. In 

order to allow fair comparison between different solutions, 

it is important to clearly specify the main processing 

blocks that can be enabled when scoring the proposed 

subjective benchmarking metric.  

 

2.2. Define test environment 

 

A good visual quality benchmarking metric needs to be 

repeatable and has very minor room for ambiguity. It is 

important to clearly define the test parameters for the 

feature being benchmarked. Some of the important test 

parameters are given below: 

 

1) Input/output formats: The formats for the test inputs 

and outputs should be defined. This will include picture 

format (progressive/interlaced), resolution (480i, 480p, 

1080p etc), frame rate (24fps, 60fps, 120fps etc), pixel 

format (yuv, rgb, hsv etc) and pixel packing format 

(yuv422, yuv444 etc). If a single processing block is being 

evaluated, a format that requires minimum pre- processing 

must be chosen. 

 

 

 
 

Figure 1: Steps to create subjective benchmarking metric. 

 

2) Platforms: It is important to define the target platforms 

for the selected benchmarking tests. These can range from 

mobile phones and tablets to television sets with ultra-high 

definition formats. In the case of 3D tests, one has to 

consider passive/active displays, and stereoscopic/auto-

stereoscopic displays. The evaluation display has to be 

representative of the target application. 

3) Display calibration and viewing conditions: In order to 

get repeatable results with the benchmarking tests, one has 

to provide viewing conditions and appropriate display 

calibration steps. Some algorithms such as color and 

contrast enhancement are very susceptible to viewing 

conditions and display calibration. It is difficult to match 

different types of displays (LCD/Plasma) and different 

brands of displays. These constraints should be taken into 

account when designing the benchmarking metric. 

 

2.3. Select attributes 

 

In selecting test clips for the benchmarking metric, it is 

essential to take into account failure modes of the 

algorithm- or pipe-under-test. Failure modes are 

conditions under which the test algorithm can break down, 

resulting in visual impairments in the output. As an 

example, fast motion (out of search range) would be a 

failure mode of algorithms that rely on motion-estimation. 

Failure modes can typically be directly mapped onto 

characteristics or attributes of the input test clips. It is 

essential, therefore, that the test clips selected have 

relevant attributes such that the failure mode of the 

algorithm is exercised. Some examples of attributes which 

need to be commonly considered for video processing 

algorithms are: 

1) Noise level: Noise level is an important attribute which 

needs to be considered for many of the video processing 

algorithms. Some algorithms will be very sensitive to 

noise level e.g. motion estimation, noise reduction, and 

sharpness/contrast enhancement. 



2) Noise type: Along with noise level, noise type is an 

important attribute. Examples of the noise type are 

Gaussian noise, compression noise and salt & pepper 

noise. 

3) Spatial frequency: Spatial frequencies which are 

challenging for the feature under test need to be 

considered. For example, noise reduction algorithm should 

include both smooth and textured regions. In the smooth 

regions noise is more visible and on the other hand any 

strong filtering will introduce softness in the textured 

regions. Another example will be motion estimation 

algorithms, which will have difficulty in finding good 

motion vectors for spatial frequencies with periodic 

structures. 

4) Edge orientation: Edge orientation (diagonal, shallow 

edges) is an important attribute for interpolation 

algorithms, such as deinterlacing and image scaling. It is 

challenging to accurately calculate edge direction at 

shallow angles, which can manifest into incorrect 

interpolation and artifacts. 

5) Motion type: Motion is an important attribute for 

several algorithms which depend on motion detection and 

estimation. Amount of motion (fast or slow) and type of 

motion (panning, zooming) should be considered in 

selecting the motion attribute. 

6) Overlays/transparencies: Overlays and transparencies in 

the sequence can be challenging for some of the 

algorithms, especially which involve motion detection or 

estimation. These can be typically found in the content 

with waterfalls, fountains or video edits with fade-in and 

fade-outs. 

7) Chroma information: Chroma can be an important 

attribute for some of the interpolation and motion 

detection related algorithms. The chroma related issues in 

the algorithm will be more apparent at higher output 

resolutions. 

All the sequences in the test database should be 

classified according to the selected attributes. It is 

expected that some sequences will have more than one 

attribute, in which case one can include relative weight of 

each attribute. 

 

2.4. Assign weights to attributes 

 

In this step, priority or weights are assigned to the 

attributes included in the benchmark metric in accordance 

with their perceptual relevance. The relevance of various 

attributes can be obtained by domain experts directly from 

the processing requirements of the algorithms involved, 

and by studying their failure modes under a large and 

diverse set of test inputs. The set of sequences which can 

stress the functionality of the feature or algorithm will be 

candidates to be included in the benchmark set.  

Freq of

occurrence

 
Figure 2: Histogram showing frequency of occurrence of 

failure modes for selected attributes. 

 

It is important to study at least two different solutions 

or algorithms to reliably predict weights for the attributes. 

In many cases, prior knowledge of the working of the 

algorithm can be helpful in determining the weights for the 

attributes. After studying the failure modes for the selected 

attributes, a histogram of frequency of occurrence of the 

failure modes is plotted, as shown in Figure 2. The 

frequency of occurrence of attributes is normalized by 

total number of occurrences of all attributes, to obtain the 

attribute weight. The weight assignment step is revisited in 

the event new failure modes are identified.  New attributes 

are added to comprehend the additional failure modes, and 

the weights are reassigned based on the new histogram. 

 

2.5. Select test content 

 

In this step, test content for the subjective metric is 

selected based on the chosen attributes. The final number 

of test clips depends on how many attributes need to be 

included and their relative weights (Table 1). Each test 

clip can have more than one attribute, and the column 

corresponding to the given attribute is marked in the table. 

After selecting a minimal set of test clips that cover all the 

relevant attributes, the frequency of each attribute is 

calculated by summing the attribute columns.  

Table 1: Illustrative example of attribute weight selection. 

Sequence 

Names 

Attr. 

1 

Attr. 

2 

Attr. 

3 
… 

Attr. 

m 

# of 

Attr. 

Seq-1 x  x   2 

Seq-2  x x   2 

Seq-3 x     1 

…      1 

Seq-n  x x  x 3 

Freq. Of 

Occurrence 
4 6 10  25 

 

Attr. Weight 0.1 0.12 0.20  0.45 1.0 



The normalized frequency of occurrence of attributes 

provides the attribute weight. The attribute weights thus 

calculated should resemble the relevance curve of the 

attributes. Hence, the sequence selection may need to be 

iterated till the relative weights of different attributes 

matches the one defined after studying the failure modes 

for the algorithm under test. 

Based on the attributes present and their weight, the 

researchers will create a scoring guideline for each 

sequence. Typically a discrete range between 1-5 is used, 

with variable points reduction for failure or deficiencies 

related to each attribute. 

 

3. CASE STUDY: IMAGE UPSCALING METRIC 

 

In this section, we apply the presented methodology to the 

particular case of an image upscaling metric. The goal of 

the exercise is to demonstrate the practical use of the 

methodology to construct an image upscaling metric by 

following the different steps described in Section 2, from 

characterizing the principal failure modes for scaling 

algorithms to building the minimal test set with associated 

guidelines. In line with the processing requirements, the 

metric evaluates the upscaling technique’s capability of 

preserving the input picture quality across different scales. 

When the upscaling technique introduces distortions along 

a given picture attribute vector (e.g. high-contrast edges), 

these manifest in the form of undesired image artifacts on 

the upscaled picture (e.g. jaggies).  

The first step is to define the perimeter of scaling 

solutions being evaluated. We are interested in a scaling 

metric targeted at standalone single-frame upscaling 

methods. Since scaling is the feature of interest, typical 

picture enhancements such as noise reduction or sharpness 

enhancement need to be disabled whenever present. 

Temporal super-resolution and other methods using 

multiple input images are beyond the scope of techniques 

being evaluated.  

Secondly, related to the metric application, we need to 

define the test environment. Techniques under evaluation 

include software algorithms (e.g. Photoshop®, and 

SmartEdge [8]) but also hardware capabilities in CE 

devices such as HDTV, tablets, and phones. Quality 

performance is sought for both still and video content. 

Performance on interlaced content is deemed not relevant 

in order not to contaminate the scaling quality with 

deinterlacing quality. Fair and good quality test content is 

considered, with input video resolutions of 720x480, 

1280x720 and 1920x1080 and output video resolutions of 

1920x1080 and 3840x2160. It is advised to perform visual 

quality evaluation on calibrated 1080p and 4K QFHD 

professional displays. In the case where professional 

displays are not available, regular HDTV or 4K TV can be 

used after calibration (with all picture enhancement 

options disabled).  

Subsequently, the key picture attributes for scaling are 

defined and prioritized. The process to define these was 

based on extensive testing, using multiple scaling 

algorithms on a large data set to identify challenging 

attributes for scaling. 

 

 

Figure 3: Attributes distribution in the test set: actual (bars) 

vs. theoretically defined (red). 

Table 2: Selected test clips with attribute weights. 

 Expert knowledge derived from the literature is also used 

for the attributes selection. Following this process, five 

attributes were selected. For each attribute, we also specify 

the corresponding observable degradations in the upscaled 

pictures. By order of priority, these attributes are classified 

as follows: 

1. Slanted edges (high-contrast edges, thin edges) � 

Jaggies and Roping. 

2. Detail level (spatial high frequencies such as natural 

texture, geometric patterns, vertical/horizontal edges) � 

Blur, loss/degradation of details, Ringing, Moiré, flicker. 

3. Sharpness level � Blur. 

4. Noise level (analog, compression) � Noise 

amplification, flicker. 

5. Color (all of the above) � Color artifacts (all of the 

above).  

Following the attributes definition, we selected a minimal 

set of clips to form the scaling test set. The clips are 

selected so that the frequency of occurrence of attributes 

Sequence 

Name 

Output 

 Res 

Slanted 

Edges 

Spatial HF Color Sharpness 

level 

Nois

e 

Video1-720p   2160p 3 3     2 

Still1 (720p)  2160p 3 2   1   

Video2 (480p) 1080p 3   3     

Still2 (720p) 2160p 2 3   1   

Video3 (480p) 1080p 2 2 1 1   

Still3 (480p) 1080p 1 3       

Total  14 13 4 3 2 



present in the scenes match the defined priority (obtained 

following Section 2 instructions). Figure 3 illustrates such 

matching. Both natural content and graphics imagery were 

used to populate the test set. Table 2 provides frequency 

of occurrence of each attribute in the selected test clips, 

with totals along the columns highlighting the relative 

importance of a given attribute in the entire test set.   

Using the test set, we provide clear guidelines for scoring 

the performance of scaling algorithms. First for each test 

clip, we consider the cumulative weights of all attributes 

present in said clip. This number is obtained by totaling 

along the rows of the previous table and represents the 

overall scaling complexity for the test clip. The maximum 

score should directly derive from this complexity number 

and reflects how challenging a particular test clip can be to 

upscale. Here, we apply simple thresholds to the 

complexity numbers in order to allocate a maximum 

scaling score to each clip in the set. The maximum score 

for each clip also represents its relative importance within 

the test set.  Then for each test clip, we examined the 

visual artifacts obtained with poor scaling performance 

and determined clear, unambiguous rules instructing 

subjects on how to deduct points from the maximum score. 

One such example is shown in Figure 4.  Since jaggies are 

observed at different edge orientations for different scaling 

methods, the addition of visual aids and color coded 

regions onto the test picture enable simple, yet strict 

instructions for scoring, based on observed quality 

performance in each region.  

 

Figure 4: Example simple scoring guidelines. 7: No jaggies 

at all angles. 5: Jaggies only in green regions.  2: Jaggies in 

yellow regions. 0: Jaggies in red regions or objectionable 

quality. 

The definition of the scoring guidelines for all test clips 

completes the metric. For this example of a scaling metric, 

we tested it using 4 different algorithms (bicubic, 

SmartEdge, linear polyphase, enhanced linear polyphase) 

and 5 subjects with expertise in visual quality evaluation. 

Equipment used includes a calibrated professional 55inch 

4K display and a real-time playback system. Table 3 

summarizes the total score assigned to each scaling 

solution by the subjects when following the guidelines. 

 
Subject Bicubic Smart 

Edge 

Poly 

phase 

Enhanced 

Polyphase  

1 9 12 15 23 

2 9 12 12 23 

3 12 12 15 25 

4 9 12 15 23 

5 9 12 15 23 

 

Table 3: Subjective Scoring results of upscaling solutions. 

 

4. CONCLUSIONS 

 

A new methodology to design test sets and guidelines 

for visual quality scoring of video algorithms was 

proposed. This was tested by designing sets for various 

video processing tasks (scaling, deinterlacing, etc.). The 

scores obtained with the methodology are consistent with 

the preferences of human observers. The variability of 

scores obtained during multiple trials and between 

multiple observers was also found to be small. The 

proposed methodology was thus demonstrated to be 

effective in producing perceptually relevant quality scores 

in a consistent, repeatable manner. 
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