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A Probabilistic Contour Observer for Online Visual Tracking∗
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Abstract. This paper presents an online, recursive filtering strategy for contour-based tracking. Approaching
the tracking problem from an estimation perspective leads to an observer design for the visual track
signal associated with an individual target in an image sequence. The track state of the observer
is decomposed into group and shape components that describe the gross location and the nonrigid
shape, respectively, of the object. A probabilistic representation describes the shape nonparametri-
cally. The constitutive components of the observer are detailed, which include a dynamical prediction
model and a correction mechanism. Incorporating the probabilistic observer into the tracking pro-
cess leads to improved performance and segmentations. The improvements are validated through
application of the observer to recorded imagery with evaluation via objective measures of quality.
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1. Introduction. This paper seeks to improve the online tracking of deformable moving
objects in a video sequence through the use of an observer. The problem considered is that
of accurate contour-based object tracking in the face of uncertainty caused by imaging noise
and approximate segmentation models. Here, an object is a portion of a scene, captured by a
visual sensor, with homogeneous properties (e.g., consistent appearance information such as
intensity, color, or texture) that differentiate it from the rest of the scene. Online tracking
captures the evolving object by segmenting the individual frames extracted from a video
sequence. In its simplest instantiation, tracking consists of a series of statically determined
contour measurements for each frame. This static approach yields good results so long as
the target is sufficiently differentiated from the background. Poor differentiation arises from
approximate or inadequate segmentation models, imaging noise, or occlusions. In those cases,
this scheme may lose track of the target or result in degraded performance.

Imposing temporal consistency on the measurements is one strategy for managing im-
perfect or noisy measurements. To impose temporal consistency, [29, 43] process the image
sequence in a volumetric fashion; they consider the entire video sequence at once, or several
frames before and after the current frame, and solve a minimization problem whose solution
guarantees temporal consistency and fitness to the segmentation model. The works in [39, 42]
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optimizes in batch a parametrized model for the target and the scene. While such processing
techniques successfully impose temporal consistency of the solution, they operate in a context
where access to future measurements is allowed, or measurement delay is tolerated. This work
considers tracking techniques that operate in a recursive setting. Furthermore, the specific
focus is on methods that produce both a trackpoint and a contour encircling the target.

1.1. Prior related work. Contour-based approaches for online tracking typically consider
objects to be regions bounded by closed, planar curves [4, 19]. The space of closed, planar
curves forms an infinite-dimensional manifold [20]. In recent years, attention has been devoted
to the geometry of the manifold of curves [25, 44] and, in particular, to geodesics of closed
curves [6, 20]. Closed curve geodesics have utility within the contexts of shape comparison
and shape analysis.

The incorporation of shape constraints or of shape consistency benefits the tracking pro-
cedure. Many techniques that are robust to image-based disturbances utilize a priori shape
information [10, 21]. A collection of shapes assumed to represent the shape space is typically
analyzed using low-dimensional representation methods, e.g., principal component analysis
(PCA) or kernel PCA (kPCA), yielding a finite-dimensional approximation for the actual
infinite-dimensional shape space. The finite-dimensional representations factor into the seg-
mentation algorithms so as to constrain the measurements. Extensions to shape-based meth-
ods include temporal modeling of the low-dimensional learned shape space [8, 9, 11]. Superb
results are obtained using such techniques when the approximated low-dimensional space is
suited to the video sequence at hand [11]. However, while it is plausible to assume sufficient
prior knowledge of the target shape and movement for tracking certain sequences (rigid-body
objects, or cyclic shape deformation for a walking person from a single viewpoint), for many
scenarios it is unrealistic to make any assumption about the geometry and movement of the
target. In an unconstrained setting, the target is able to undergo any feasible deformation of
its shape, which the tracker should accurately recover.

The online tracking problem can be viewed as an estimation problem given temporally
correlated measurements. A Markov assumption simplifies the problem to one of recursive
estimation, for which one solution involves the use of an observer [13]. An observer reconciles
a prediction of the current target state and a measurement of the current target state through
a correction mechanism. Typically, the measurements are directly obtained from a sensor. In
visual tracking, rather than coming from a sensor, the measurements are considered to be the
output of a tracking algorithm.

Observers have been previously used to design visual tracking systems [12, 18, 26, 33, 38,
41]. The reference [45] defined a minimization strategy for estimating the shape and group
motion associated with a deforming object given two or more segmentations of the object.
The decomposition of an object’s motion into a group motion and a shape deformation is
not unique. However, the minimization provides a mechanism for consistently determining
the decomposition over several frames and laying the mathematical foundation for a filtering
strategy. The follow-up work [18] defined a correction strategy using the minimization algo-
rithm to arrive at a joint group-shape space filter. In [12], PCA is used to reduce the shape
space, whereby unscented Kalman filtering is performed on the resulting finite-dimensional
space. The reduced finite-dimensional shape space is of great benefit: filtering strategies
on finite-dimensional spaces (such as Kalman, extended Kalman, unscented Kalman, parti-
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cle, etc.) may be used to filter the shapes [33, 41]. The drawback of such finite-dimensional
shape approximations is related to the training step. In most cases, training requires carefully
choosing the training set, performing the reduction analysis, and possibly learning the state
evolution model in the reduced space, while facing the out-of-sample problem.

In contrast, the method in [28] derives an observer on the full infinite-dimensional manifold.
The observer state implicitly encodes for the bounding contour through a signed distance
function. However, on account of the state choice and measurement strategy, the observer has
difficulty capturing rigid-body motion of objects. These limitations are overcome in [26, 38].

1.2. Contributions of this paper. This paper considers the problem of accurate trackpoint
and boundary tracking of an unconstrained object given an image sequence. The hypothesis
of the paper is that the appropriate construction of a dynamic observer for the track object’s
state, whose shape is determined by an implicit probabilistic contour, will lead to improved
tracking performance. The observer provides a mechanism for the temporal history to influ-
ence the final segmentation of a given frame. With regards to the observer, object dynamics
are decomposed into a group component and a shape component, with a subsequent decou-
pling of filtering strategies. A consequence of the observer is improved segmentations with
more coherent and smooth target tracking.

Principal contributions include (1) the formulation of the tracking problem as an ob-
server design problem on the group and shape, (2) the incorporation of a dynamical model
for the probabilistic shape space, (3) the definition of a novel correction method suited to
the probabilistic shape space description, and (4) the quantitative validation of the system’s
performance. These contributions are discussed within the context of existing work in the
following paragraphs.

Instead of performing a joint minimization procedure, as done in [18], we decouple the
filtering strategies on each component of the state, group, and shape, yielding filtered contour
and trackpoint signals that combine to form the trackstate. A major limitation of the track-
ing system presented in [18] is the proposed joint minimization procedure and the choice of
shape averaging as the correction method, which restricts potential targets to rigid or slowly
deformable objects. Moreover, the observer components are fully embedded and described
by the internal model. The work presented here derives a more modular structure by recast-
ing the tracking problem as an estimation problem broken down into observer components
for the group and shape substates. Exploiting the decomposition leads to the ability to de-
fine second-order motion models incorporating dynamics. The dynamic model is useful for
capturing rapid or large deformations in shape. Moving away from implicit level-set curve rep-
resentations, the paper utilizes a probabilistic model for the shape space, which better retains
information about the classification of a given pixel through time than do level-set models
where such information is determined by the curve boundary only (e.g., the zero level-set). In
online tracking, relying on past information has practical utility. Thus, by using a pixelwise
probabilistic description for the internal state, overall performance is improved. Finally, we
present a correction strategy adapted to the shape space description and motivate its use for
tracking.

We believe there are several benefits associated with this approach. The observer design is
agnostic of the measurement strategy; i.e., any segmentation algorithm can be used to generate
the measurements. With respect to the measurements, this paper presents a mechanism
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Figure 1. Structure of an observer for a visual tracking system.

to augment existing segmentation-based tracking techniques rather than to replace them.
Secondly, as opposed to techniques using low-dimensional representations for the shape space,
we examine temporal consistency in a nonparametrized setting. In practice, this translates
into the proposed strategy’s not requiring training steps and being immune to the out-of-
sample problem, while still enforcing temporal consistency. Finally, defining robustness as the
ability to track with minimal deviation from the truth, the approach presented here exhibits
increased robustness. In particular, the observer enables accurate contour tracking that results
in successful tracking over extended periods of time.

1.3. Organization of the paper. The paper is organized as follows. Sections 2 and 3
respectively describe the general structure of the observer and the observer components. A
demonstration of the tracking improvement is given in section 4. Section 5 follows with a
short conclusion and discussion of future work.

2. Observer setup for visual tracking. In control theory, observers or estimators are
used to reconstruct the state of a system from (possibly incomplete) measurements [13]. In
addition to estimating unmeasured state variables, an observer is capable of filtering noisy
measurements. Within the context of visual tracking, the proposed observer will serve to
both estimate unmeasured state quantities and filter noisy measurements. The structure of
the proposed observer for visual tracking is given in Figure 1. It reflects the fact that filtering
will be performed on the output of a visual tracking strategy rather than on the raw visual
sensor data. Thus a state space must be defined for the internal states of the observer.

State description. The state of a deformable moving object comprises a group motion
(pose) and a shape component describing the rigid motion and the nonrigid deformations of
the object, respectively [45]. The group motion can be described by SE(2) or its subgroup
E(2) [16]; the special Euclidean group in two dimensions, SE(2), is a Lie group formed by
the set of rigid-body motions in the plane. Its subgroup E(2), the Euclidean group in two
dimensions, is the set of translations in the plane. The nonrigid or shape component is given
by a closed curve, meaning that the shape space is the space of closed curves. The closed
curve description serves to partition the image domain into target and background regions.
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group

shape

Figure 2. Measurements of the group and shape. The description of a moving object is given by a group
component that encodes for gross movement in the image frame and a shape component that encodes for non-
rigid movement. To the left, the segmented object is displayed within the image, with the group component
determining the origin of the velocity vector (top right) and the coordinate axis of the implicit shape description
(bottom right). The shape description depicts both the current shape and the shape velocities.

A standard representation for the closed curve C is achieved through its embedding into a
higher-dimensional space, e.g., as the level-set of a signed distance function [35]. In practice,
any function capable of implicitly describing a shape through the selection of an iso-contour
will suffice. This work proposes a probability field defined over the image domain, P : D →
[0, 1], where D ⊂ R

2 compact. The implicitly defined contour C is recovered through the set
C = {r ∈ D | P (r) = ρ}, where ρ ∈ (0, 1). Pixels with probabilities higher than or equal
to ρ are presumed to belong to the target, and those with lower probabilities are presumed
to belong to the background (we use the value ρ = 0.5). Consequently, the shape space for
the work described herein is the space of probability fields defined over the image domain, an
element of which will be denoted by P . We will also require the velocity field associated with
P , here denoted by Θ. Thus, the state of the tracking system is described by the group variable
g and the probability field P in conjunction with their associated velocities (g, P, ξ,Θ); see
Figure 2.

3. Observer components. Observer implementation requires the definition of a prediction
model for the state and a correction strategy for the internal model, given state measurements.
State measurements serve as inputs to the observer, while the complete estimated state of the
system is typically the output. The correction model is crucial to estimation performance:
from a prediction and a measurement, it generates an updated estimate of the internal state
of the observer. For the finite-dimensional group component, the correction is relatively
straightforward. In comparison, there is not a unique method for performing correction on
the shape component, due to the manifold nature of the space of closed curves.

Consider a linear finite-dimensional system in state space representation. In what follows,
let the subscripts and superscripts m, −, and + respectively denote measurement, prediction,
and correction. The update equation of a finite-dimensional observer, with discrete correction
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Table 1
State motion models.

Static prior

{
ġ = 0

Ṗ = 0

Constant group velocity

{
ġ = ξ, ξ̇ = 0

Ṗ = 0

Constant velocity (1)

{
ġ = ξ, ξ̇ = 0

Ṗ +∇P ·Θ = 0, Θ̇ = 0

Constant velocity (2)

{
ġ = ξ, ξ̇ = 0

Ṗ +∇P ·Θ = 0, Θ̇ +∇Θ ·Θ = 0

times, is given by [
x
ẋ

]+
=

[
x
ẋ

]−
+

(
K11 K12

K21 K22

)
·
[
err(xm, x−)
err(ẋm, ẋ−)

]
,

where err(xm, x−) and err(ẋm, ẋ−) are the residuals in “position” and “velocity.” The gain
matrix K = [Kij ] for i, j = 1, 2 is such that all entries lie in the range [0, 1].

In the present case, an ideal correction scheme on the shape of the target would be to
compensate the predicted shape by using the residuals in position and velocity, appropriately
weighted with a gain matrix K. Because of the nature of the shape space and its probabilistic
model, this scheme is infeasible. We propose instead a correction method adapted to the
probabilistic shape description. The following sections further detail the observer inputs and
components with regards to the visual tracking problem defined in the introduction.

3.1. Prediction model. The prediction model uses the state estimate from the previous
frame to produce an estimate at the current frame. It is derived from a priori knowledge about
the target evolution. With strong priors about the state dynamics, this framework allows the
use of a detailed motion model to predict state estimates at future times from present and
past state estimates. In some cases, generic motion models exist that can sufficiently capture
the system dynamics. For more specific motion models, one can appeal to available literature
or otherwise derive a motion model from first principles.

In this paper, we propose two general purpose dynamic prediction models for the shape
probability field. The motion models are summarized in Table 1, along with the simpler
general models currently found in the literature (static and constant group velocity). The
constant velocity models in Table 1 push forward the probability field according to estimated
velocities of the target domain. The second model is differentiated from the first through
the advection of the velocity field with the probabilities. The incorporation of second-order
dynamics will more effectively predict the motion of deforming targets than will static shape
models, such as the static prior and the constant group velocity prior (as used in [45]). The
transport equations for the shape and associated velocities given in Table 1 are simple partial
differential equations involving the partial derivatives in time and space, respectively denoted
as Ẋ and ∇X when applied to the variable X. Real-time implementations for the motion
models exist [37].
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3.2. Measurement. As depicted in Figure 1, the measurement block is not part of the
observer even though it is an important component of the visual tracking system. The state
measurements occur external to the observer and provide it with the input. The measurement
module involves, at most, the determination of the four substates associated with the tracker,
(gm, ξm, Pm,Θm). In practice, the group velocity ξm is not normally available for measurement,
as it is not directly measurable from the image, and must be estimated. While Θ can be
approximately measured from the image sequence, doing so is optional.

3.2.1. Group/probability field. Measurement of the target shape can be achieved through
any segmentation algorithm applied to the current image, so long as the segmentation is
converted to the implicit probability field description. Candidate algorithms include Bayesian
segmentation [15], active contours [5], graph cuts [22], etc.

In a classical observer the measurements would be completely independent of the observer
states; however, image analysis of video sequences has the unique nature of not explicitly
providing the necessary signal. Instead such a signal must be extracted from the image using
an image processing or computer vision algorithm. The measurement procedure may not
completely determine the necessary target state measurements (due to the nonuniqueness of
the group plus shape decomposition). Consequently, a registration step is required to describe
the predicted and measured shape with respect to the same coordinate frame.

Once localization [7, 31, 36] and segmentation are performed on the current image, a
registration procedure is applied to match the resulting measured probability field with the
predicted probability field, yielding a measurement gm for the group motion and a measure-
ment Pm for the shape. Registration can be achieved through the use of deformotion to
identify the group transformation only [45], or through another suitable algorithm.

3.2.2. Velocity field. The velocity field Θm can be measured by computing the optical
flow [17] between two subsequent aligned images In−1 and In. Since direct implementation
of the optical flow field might not allow the capture of large displacements, one may need to
refine the algorithm in order to fully capture the field [1]. One example of such refinement
would be to consider pyramidal implementations. Alternatively, rather than using the velocity
field traditionally computed by the optical flow, one can use another variant based on the
displacement field. The displacement field minimizes the energy functional

E(u, v) =

∫
D
[In(x, y)− In−1(x+ u, y + v)]2 dx dy

+ λ ·
∫
D

[
||∇u(x, y)||2 + ||∇v(x, y)||2

]
dx dy.

The minimization of the functional can be performed through a simple iterative Gauss–Seidel
procedure: {

uτ+1 = uτ + dτ · (λΔu+ Ix · [In − In−1(x+ u, y + v)]) ,

vτ+1 = vτ + dτ · (λΔv + Iy · [In − In−1(x+ u, y + v)]) ,

where Δ denotes the Laplacian operator, τ is an artificial time parameter, dτ is the time step,
(uτ , vτ ) represents the displacement field at time τ , and (Ix, Iy) is the gradient in space of the
image In−1. The resulting error vector field Θerr = (u, v) is able to capture large disparities
between the images In−1 and In.
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Table 2
State correction model. (EKF: extended Kalman filtering; UKF: unscented Kalman filtering)

State component Correction description

Group and group velocity Correction according to the update equations of the finite-
dimensional filter adopted (Kalman, EKF, or UKF).

Shape P̂+ = (P̂−)
1−K11 · (Pm)K11

Shape velocity Θ̂+ = Θ̂− +K21 ·Θerr(Pm, P̂−) +K22 · (Θm − Θ̂−)

3.2.3. Regarding the shape measurement. Recall that the observer is agnostic to the
measurement strategy. If the segmentation algorithm does not automatically generate a proba-
bility field, then conversion to implicit probability field form is required. For example, consider
an active contour implicitly represented by a signed-distance function, Ψ : D → R. Conversion
to a probabilistic description is realized using the regularized Heaviside function [5], whose
values lie in the range [0, 1],

P (·) = 1

2

(
1 +

2

π
arctan

(
Ψ(·)
σr

))
,

or by applying the cumulative density function of the normal distribution (with zero mean)
to the negative signed-distance function,

P (·) = cdf(−Ψ(·);σr) = 1

2

(
1 + erf

(
Ψ(·)
σr
√
2

))
,

where σr is the standard deviation and erf denotes the Gauss error function defined by erf(x) =
2√
π

∫ x
0 e−t2 dt. In both cases, σr is a regularization parameter.

3.3. Correction. Given state measurements, the correction model refines the current es-
timate of the state. Due to the nonuniqueness of the group and shape decomposition, the
measurement procedure may not properly determine the necessary target state measurements
for comparison against the predicted state. A registration step is required to describe the
predicted and measured shapes with respect to the same coordinate frame [45]. Thus, once
localization and segmentation is performed on the current image, a registration procedure is
applied to match the resulting measured probability field with the predicted probability field.
The registration procedure yields the group error, which is also the necessary transforma-
tion to describe the two shapes within the same coordinate system. Table 2 summarizes the
correction model as detailed in the remainder of this section.

3.3.1. Group. In this work, the group motion is described by SE(2), or its subgroup
E(2). It is given by a translation in the x-axis, a translation in the y-axis, and possibly
a rotation of the axes. Correction on the group motion can then be done through classic
filtering using a three-state vector (appropriately augmented). If a linear motion model such
as the one presented in Table 1 is used, Kalman filtering is recommended. When the motion
model is believed to be nonlinear, nonlinear filtering methods such as extended or unscented
Kalman filtering should be considered. Detailed information about Kalman filtering can be
found in [24].
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3.3.2. Shape. This paragraph motivates the use of geometric averaging for the correction
scheme through an analysis of the effect of additive noise on the shape density when using
Bayesian classification to identify foreground and background regions.

Setup. For simplicity, consider a scalar valued image I : D → R defined over D ⊂ R
2

compact. Further, assume that measurement of the pixel intensities has been corrupted by
additive Gaussian noise ν with zero mean and variance σ2

ν . Segmentation can be performed
through Bayesian classification [15] with two classes: foreground and background. The two
classes are modelled with a Gaussian distribution for the pixel intensities. Assuming uniform
priors and a normal distribution N (μF , σ

2
F ) for the foreground pixels, then the measured

likelihood for the corrupted pixel I(r) to be classified as foreground is given by

ζF (r) =
√
c · e−

1
2

(
I(r)+ν−μF

σF

)2

,

where c is a positive normalizing factor. The expression for the measured likelihood can be
expanded further to give

(3.1) ζF (r) =
√
c · e−

1
2

(
I(r)−μF

σF

)2

· e−
1
2

(
ν

σF

)2

· e−
(

ν (I(r)−μF )
σ2
F

)
,

which can be rewritten as
ζF (r) = PF (r) · η(r;μF , σF ),

where PF (r) consisting of the first two terms from (3.1) is the true classification likelihood,
and η(r;μF , σF ) consisting of the remaining terms is the class measurement noise. Thus,
corruption by additive noise on the image data results in multiplicative uncertainty for the
foreground likelihood. The multiplicative uncertainty is correlated with the image distribution.
A similar derivation holds for the background classification densities. Further, the extension
to vector valued imagery follows naturally.

Estimation with multiplicative noise. In the log-space associated with the probabilities,

log ζF (r) = log PF (r) + log η(r;μF , σF ),

the uncertainty associated with the additive image noise becomes additive (but nonlinear).
Now, suppose that the current estimate for the foreground probability field is P̂−

F , while the
current measurement of the probability field is ζF . Applying pointwise a constant gain linear
filtering strategy to filter the noise leads to the corrected estimate of the probability field,

log(P̂+
F ) = log(P̂−

F ) +K
[
log(ζF )− log(P̂−)

]
.

Rearranging the terms, we obtain

log(P̂+
F ) = (1−K) log(P̂−

F ) +K log(ζF ).

Returning to the density space by applying the exponential gives

P̂+
F =

(
P̂−
F

)1−K
(ζF )

K .

Thus, a suboptimal filtering strategy for managing uncertainty is to perform geometric av-
eraging of the segmentation probabilities. The filtering applies to both the foreground and
background probability fields.
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Application to visual tracking. Correction on the shape will be performed using geometric
averaging. It was just shown that, under the proper assumptions, the use of probabilities
for the measurement strategy induces multiplicative uncertainty. In the log-space, where
multiplicative error becomes additive error, linear correction is performed. After correction
in the log-space, transformation back to the probability space results in geometric averaging.

The geometric averaging correction strategy for the shape probability field is applied
pointwise,

P̂+(r) =
(
P̂−(r)

)1−K11(r) (
P̂m(r)

)K11(r) ∀r ∈ D.

The parameter K11 is defined by the user according to the measurement noise. Low K11 is
for high measurement noise, since the correction is biased towards the prediction. High K11

is for low measurement noise, since the correction is biased towards the measurement. Here,
the gain K11 is constant temporally but may vary spatially. For example, since the shape is
always centered, low gain values may be applied near the image boundaries to forbid shape
update where the target is known to be absent. Last, the gain K12 is set to zero due to the
structure of the shape space.

3.3.3. Shape velocities. The shape velocities live in the tangent space to the shape prob-
ability field, meaning that shape velocities lie in the space of two-dimensional vector fields
defined on D. Corrections on the velocity field occur through an error in the measured prob-
ability fields, Θerr, and an error in the measured velocities:

Θ̂+ = Θ̂− +K21 ·Θerr(Pm, P̂−) +K22 · (Θm − Θ̂−).

The error vector field Θerr is not uniquely defined and will vary according to the notion
of geodesy, as discussed in the introduction. One method for generating the error Θerr is to
compute the optical flow between the measured and predicted probability fields, while another
is to utilize optimal mass transport [32].

4. Experiments and results.

4.1. Setup. The observer-based tracking system was tested on a body of construction
footage and aquarium sequences. The basic measurement strategy chosen was Bayesian seg-
mentation [15]. In addition to tracking with Bayesian segmentation, several other methods
were tested on the sequences. The third algorithm used is from [18], which is a joint filtering
strategy for both the group and the shape, and is labelled Deformotion in Figure 3 and there-
after. An active contour technique [34] has also been applied based on the same distributions
used by the Bayesian algorithm; it is labelled AC. A standard additional regularizing term
is present in the active contour energy whose relative weight with respect to the probability
competition terms has been manually tuned for each sequence to optimize performance. The
parameter regulates convergence to the object (external energy) while penalizing irregular-
ities of the contour (internal energy) [3]. The fifth comparison technique is a shape-based
method derived from [40], similar to [9] and labelled Shape. The shape-based segmentation
strategy uses the same distributions as the Bayesian algorithm. Often in the literature, the
shape-based trackers utilize the learned shape priors from the same image sequence to be
tracked. In more realistic scenarios, one cannot presume the existence of shape information
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Figure 3. Box plots of the comparative statistics on the infrared sequence. For each metric/algorithm pair,
the corresponding box represents the error distribution, with lines at the lower quartile, median, and upper
quartile values. The extent of the remaining data is displayed by the lines extending out from each box. Outliers
are denoted by the + symbol.

for all possible persons/objects to be tracked. Consequently, we obtained 67 sample shapes
from our construction imagery database, and the ten dominant eigenmodes were kept. For
the aquarium sequence, seven shapes were considered, and the five dominant eigenmodes were
retained. For all methods except deformotion, we applied the same filter to the group space,
while the shape-based method also utilized a Kalman filter on the finite-dimensional shape
parameters.

For the noisy infrared sequence, we used a sixth comparison algorithm based on a finite-
dimensional approximation of the shape space. From a collection of 30 shapes extracted from
the infrared sequence, we used an autoregressive model [27] to learn the state evolution in the
PCA-reduced shape space, as in [8]. At each frame, the Kalman tracker operates by projecting
the shape obtained through the Bayesian algorithm on the PCA space; the resulting vector
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is then applied to a Kalman filter and reconstructed back in the shape space for display and
comparison purposes.

4.2. Validation. In order to validate the effectiveness of the observer, the output signal
(group plus shape) was compared against a ground truth signal using a variety of error metrics.
Manual segmentations of all sequences served as the ground truth. For the group signal, we
used the L2 and L∞ errors with respect to the ground truth. For the shape signal, we used
the number of misclassified pixels (NMP), the Hausdorff distance, and the Sobolev distance
[6, 23]. For the infrared sequence, we also used the mean and maximum Laplace errors [30].
For more information about shape metrics, see [6, 46, 14, 20] and references therein. The
performance summary tables (Tables 3–4) give the median value of the shape error computed
for all frames successfully tracked by the given method, and also the maximum shape error
throughout the sequence. The median value gives an indication of how well on average a given
technique is performing, while the maximum value highlights the worst behavior.

The sample tracking snapshots (Figures 6–10 below) display three chosen frames for each
tracking algorithm: the left frame depicts the lowest shape error, the middle frame illustrates
a sample shape error at the median, and the right frame shows the largest shape error.
Strikeouts in the text indicate a loss of track.

4.3. Comments. The first set of observations will be made on the results obtained for the
noisy infrared sequence. The Bayesian measurement strategy results in the worst performance
with relatively large deviations. The quality of the segmentations is shown in Figure 4.

The active contour better manages the noise, on account of the regularization term, but
has a tendency to undersegment. The deformotion tracking, through its shape averaging
correction, attenuates the noise but also oversmooths, as reflected by the number of misclas-
sified pixels and the Sobolev distance. Listing the algorithms as {Bayesian/AC, Deformotion,
Shape, Kalman} orders them according to the quantity of prior information embedded into
the algorithms (from least to most). It is therefore to be expected for the metrics to indicate a
ranking of performances in that order. The Bayesian observer, lying between the deformotion
and shape methods in term of information requirements, exhibits an ability to filter out the
noise while still matching the segmented shapes to the ground truth. When compared to the
other algorithms (Figure 4), the Bayesian observer has the best overall performance after the
Kalman tracker. The Kalman tracker in this instance represents the best possible tracker. The
dynamics of the trackstate have been fully analyzed and described in the dynamical model,
plus the learned shapes were obtained directly from the image sequence. In most scenarios,
one is unlikely to have available a tracker with such prior knowledge and with the guarantee
that the parametrized shape space will perfectly describe the target movement.

The remainder of the discussion will revolve around the video sequences whose performance
evaluation is depicted in Table 3. Sample frames are given in Figure 5. The table summarizes
the performance results obtained using various performance measures. For each of these
metrics and each algorithm, we provide the median value and the maximum value of the
corresponding error throughout the sequence. When a given technique fails to track the
target throughout the entire sequence, the corresponding column is stricken out.

The first construction sequence (Figure 6) contains a worker that is bending at some point
in the video (frame 57 to frame 162). Even though a couple of the bending segmentations were
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(a) Sample from original se-
quence.

(b) Sample from noisy sequence.

 22 121 159
Frame

(c) Sample ground truth.

67 89  6
Frame

(d) Bayesian tracker.

 11 113  61
Frame

(e) Active contour.

117 133   6
Frame

(f) Deformotion tracker.

 83  29 152
Frame

(g) Shape-based.

171  37 109
Frame

(h) Kalman-based tracker.

67 95 30
Frame

(i) Observer-based tracker.

 
Metric \ Algorithm Bayesian AC Deformotion Shape Kalman Observer 

Trackpt error      (L2/L¶) 1.8 / 4.4 1.4 / 3.9 1.2 / 3.4 3.0 / 10.5 1.4 / 5.8 1.2 / 4.4 

NMP              (med - max) 129 / 242 91 / 160 116 / 211 105 / 199 70 / 146 90 / 155 

Hausdorff       (med - max) 6.2 / 13.5 4.5 / 9.5 4.0 / 6.7 3.9 / 7.7 3.0 / 6.7 3.5 / 6.6 

Sobolev         (med - max) 3.2 / 10.5 2.4 / 6.9 1.5 / 3.6 1.5 / 5.4 0.8 / 8.8 1.2 / 3.3 

Mean Laplace  (med - max) 1.9 / 9.8 0.7 / 2.4 1.1 / 1.8 1.0 / 4.7 0.6 / 2.3 0.8 / 1.5 

Max Laplace  (med - max) 5.5 / 13.0 2.3 / 3.5 3.2 / 6.4 3.3 / 8.0 2.2 / 4.9 2.8 / 6.2 

# Frames tracked 180 180 180 180 180 180 

 
 
 
 

(j) Table summarizing the statistics.

Figure 4. Noisy infrared sequence. For each algorithm (in (d)–(i)), the left frame represents the best frame
tracked, the middle frame shows how the technique operates on average, and the right frame displays the worst
segmentation obtained. The table highlights the results obtained when comparing the different tracking techniques
with the ground truth using objective measures of quality. For each of these metrics and each algorithm, we
provide the median value and the maximum value of the corresponding error throughout the sequence.
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Table 3
Comparative performance of applied algorithms.

(a) Construction sequence 1. 
Metric \ Algorithm Bayesian AC Deformotion Shape Observer 

Trackpt error     (L2/L¶) 16.6  / 24.4 11.5 / 52.3 7.9 / 16.0 5.4 / 12.3 8.0 / 15.5 

NMP               (med/max) 253 / 1420 288 / 1328 202 / 755 299 / 536 171 / 508 

Hausdorff        (med/max) 10.2 / 35.0 30.0 / ¶ 7.8 / 26.2 10.9 / 25.8 7.7 / 27.4 

Sobolev          (med/max) 8.2 / 70.6 100.0 / ¶ 5.8 / 35.3 11.7 / 38.1 6.5 / 81.8 

# Frames tracked 200 150 200 200 200 

(b) Construction sequence 2. 
Metric \ Algorithm Bayesian AC Deformotion Shape Observer 

Trackpt error     (L2/L¶) 11.5 / 13.3 8.6 / 12.4 8.3 / 12.4 6.5 / 9.1 8.3 / 12.4 

NMP               (med/max) 84 / 183 98 / 194 94 / 146 264 / 354 81 / 132 

Hausdorff        (med/max) 3.9 / 7.5 5.7 / 12.0 4.7 / 9.2 8.9 / 13.2 3.9 / 8.1 

Sobolev          (med/max) 1.6 / 5.0 4.5 / 33.3 3.1 / 10.8 14.0 / 23.8 2.2 / 9.2 

# Frames tracked 100 100 100 100 100 

 
 (c) Construction sequence 3. 

Metric \ Algorithm Bayesian AC Deformotion Shape Observer 

Trackpt error     (L2/L¶) 9.1 / 10.9 6.2 / 23.6 2.1 / 4.5 4.6 / 20.5 2.1 / 4.5 

NMP               (med/max) 131 / 315 206 / 451 113 / 213 158 / 282 114 / 219 

Hausdorff        (med/max) 6.5 / 14.4 10.5 / 23.0 5.0 / 9.8 6.1 / 12.5 5.0 / 12.0 

Sobolev          (med/max) 4.5 / 18.1 31.5 / 87.8 11.2 / 40.2 12.4 / 27.9 4.5 / 18.7 

# Frames tracked 150 122 150 135 150 

 
(d) Construction sequence 4. 

Metric \ Algorithm Bayesian AC Deformotion Shape Observer 

Trackpt error     (L2/L¶) 3.8 / 8.2 5.7 / 10.8 2.7 / 6.7 3.0 / 9.8 2.7 / 6.7 

NMP               (med/max) 51 / 143 40 / 103 39 / 129 93 / 167 38 / 188 

Hausdorff        (med/max) 6.8 / 16.5 3.7 / 27.3 3.7 / 13.7 9.2 / 19.1 4.6 / 14.3 

Sobolev          (med/max) 6.7 / 86.1 4.8 / 220.4 2.9 / 25.4 13.1 / 30.4 3.7 / 23.2 

# Frames tracked 657 403 640 418 1010 

 
(e) Aquarium sequence. 

Metric \ Algorithm Bayesian AC Deformotion Shape Observer 

Trackpt error     (L2/L¶) 8.6 / 13.2 2.8 / 7.0 2.6 / 12.3 5.6 / 15.8 2.7 / 5.8 

NMP               (med/max) 251 / 969 244 / 549 248 / 769 575 / 833 279 / 478 

Hausdorff        (med/max) 10.9 / 18.4 11.1 / 19.2 12.3 / 19.7 12.0 / 22.5 14.6 / 20.7 

Sobolev          (med/max) 8.2 / 52.9 12.9 / 95.8 11.9 / 46.7 13.2 / 43.9 12.9 / 26.9 

# Frames tracked 477 478 477 475 478 

 

used at the training step, they did not factor into the main eigenmodes. Consequently, the
shape-based technique is unable to find the correct shape for the portion of the video where the
man is bending. It may be possible to improve the segmentation with the shape-based method



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A PROBABILISTIC CONTOUR OBSERVER FOR ONLINE VISUAL TRACKING 849

(a) Sequence 1. (b) Sequence 2. (c) Sequence 3. (d) Sequence 4.

Figure 5. Sample frames from construction video sequences.

  4  77 117
Frame

(a) Ground truth.

 43  96 156
Frame

(b) Bayesian tracker.

113   6 175
Frame

(c) Active contour.

121  56 168
Frame

(d) Deformotion tracker.

 54 100 181
Frame

(e) Shape-based.

 42  89 156
Frame

(f) Observer-based tracker.

Figure 6. Tracking snapshots of construction sequence 1 (strikeouts indicate loss of track).

by allowing for more eigenmodes. However, to consider all possible shapes would increase the
computational complexity of the technique and significantly increase the size of the training
set. A further difficulty of the sequence is the fact that the target and background distributions
overlap somewhat, which leads to some ambiguity regarding the proper segmentation. The
depiction of the worst shape error indicates that all of the methods, with the exception of
the Bayesian observer, were unable to reject the segmentation disturbance. By reducing the
measurement information to the segmentation boundary, the deformotion method effectively
ignores any temporal history associated with the interior target regions. The Bayesian observer
maintains a history of the segmentation probabilities pixelwise and can thus more effectively
reject spurious segmentation leakages that occur in individual frames. The worst-case scenario
for the Bayesian observer indicates a more conservative estimation of the shape than for the
other filter-based methods.

Sequence 2 (Figure 7) features a construction worker going down a slope. The Bayesian
segmentation method performed well, as reflected by the quality metrics given in Table 3.
This example illustrates that by applying the Bayesian observer, one can still improve the
quality of the segmentations. Not only do we enforce temporal consistency, but thanks to the
second-order model that incorporates dynamics, we are able to maintain a coarse definition of
the contour around the legs of the man. In this case, due to shape averaging, the deformotion
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 4 41 84
Frame

(a) Ground truth.

22 85 50
Frame

(b) Bayesian tracker.

88 67 95
Frame

(c) Active contour.

20 87 79
Frame

(d) Deformotion tracker.

71 29  4
Frame

(e) Shape-based.

24 61 94
Frame

(f) Observer-based tracker.

Figure 7. Tracking snapshots of construction sequence 2.

 46  70 150
Frame

(a) Ground truth.

 83   2 105
Frame

(b) Bayesian tracker.

 37  65 139
Frame

(c) Active contour.

 25  63 128
Frame

(d) Deformotion tracker.

 57  85 132
Frame

(e) Shape-based.

 85 101 140
Frame

(f) Observer-based tracker.

Figure 8. Snapshots of construction sequence 3 (strikeouts indicate loss of track).

method consistently fails to capture the legs, as can be seen in the middle frame (Figure 7).
Sequence 3 (Figure 8) features a working man on a construction site who approaches an-

other man with similar colors/distribution. Since the Bayesian tracker and the active contour
obtain a trackpoint by computation of the segmentation centroid, whenever the segmenta-
tion fails and grabs portions of the background, their trackpoints deviate. Moreover, the
trackpoints fluctuate due to their dependency on shape. Even though the Bayesian observer
relies on the segmentation, it uses a registration procedure to decompose the trackstate into
group and shape, and the resulting trackpoint is immune to segmentation fluctuations: the
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148 259 274
Frame

(a) Ground truth.

319 175 247
Frame

(b) Bayesian tracker.

287 199 248
Frame

(c) Active contour.

214 149 104
Frame

(d) Deformotion tracker.

141 181 402
Frame

(e) Shape-based.

200 189 245
Frame

(f) Observer-based tracker.

Figure 9. Snapshots of construction sequence 4 (strikeouts indicate loss of track).

(a) Sample frame of
aquarium.

 18 295 450
Frame

(b) Ground truth.

 26 119  67
Frame

(c) Bayesian tracker.

  5  96 107
Frame

(d) Active contour.

 92 127  68
Frame

(e) Deformotion tracker.

132  50  15
Frame

(f) Shape-based.

 50   2 108
Frame

(g) Observer-based tracker.

Figure 10. Sample frame and snapshots of the aquarium sequence.

trackpoint remains anchored even in the presence of perturbations.
The last construction sequence (Figure 9) shows a worker walking around an excavator.

Difficulties associated with the sequence include the small size of the target compared to the
image dimensions, significant clutter, noise, and partial occlusion. The Bayesian observer
proves its robustness by tracking the whole sequence (1010 frames) with good performance.
By comparison, all other techniques fail to track up to frame #700 (Table 3).

The aquarium sequence (Figure 10) is an example of a moving object that undergoes
large shape deformations during motion reversals. Again, there is some overlap of the target
and background distributions. Visual inspection of the tracked videos show that the observer
better enforces temporal consistency on the contour, with deformotion a close second. The
results are confirmed by the performance metrics.
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Table 4
Table of statistics for observer using measurements obtained from an active contour and graph cut segmen-

tations.

(a) Noisy infrared sequence.

Metric \ Algorithm Observer with AC 
measurements 

Graph Cut Observer with Graph Cut 
measurements  

Trackpt error              (L2/L¶) 2.5 / 5.6 2.4 / 9.8 1.6 / 4.3 

NMP                        (med/max) 93 / 133 293 / 480 105 / 178 

Hausdorff                (med/max) 4.2 / 8.7 14.1 / 16.5 4.2 / 7.9 

Sobolev                   (med/max) 1.6 / 4.4 23.0 / 37.6 1.7 / 6.3 

Mean Laplace         (med/max) 0.9 / 4.6 9.2 / 16.1 0.9 / 2.0 

Max Laplace           (med/max) 2.8 / 4.9 11.1 / 16.3 3.7 / 7.8 

# Frames tracked 180 180 180 

 
(b) Sequence 1. 

Metric \ Algorithm Observer with AC 
measurements 

Graph Cut Observer with Graph Cut 
measurements 

Trackpt error            (L2/L¶) 6.5 / 22.1 7.9 / 31.1 6.9 / 27.4 

NMP                      (med/max) 192/ 663 288 / 1014 219 /457 

Hausdorff              (med/max) 8.3 / 25.4 12.8 / 32.0 11.7/ 25.9 

Sobolev                 (med/max) 6.2 / 35.8 8.3 / 70.8 10.2/ 80.1 

# Frames tracked 200 200 200 

 

Application to other measurement methods. To demonstrate the fact that other segmen-
tation-based tracking methods would benefit from the use of the probabilistic observer, the
observer strategy was applied to tracking methods relying on active contour and graph-cut
segmentation. Table 4 shows the results for two of the sample sequences. Results obtained
with the segmentation methods (active contour [34] and graph cuts [2]) are improved by the
observer. Originally, the active contour alone could not track the complete sequence (see
Table 3(a)). With the addition of the observer, complete tracking was achieved.

The Bayesian observer compares favorably with the other techniques used here. In the
face of a large variety of disturbances to the segmentation process, the observer preserves
target track and improves temporal consistency of the track signal. Using a range of metrics,
we have compared it objectively to several tracking techniques of the same family. The
results of these investigations show that the observer results in equivalent performance in the
absence of disturbances. When perturbation occurs, the observer eliminates or minimizes
the resulting undesired segmentation effects. Even when it is not able to completely correct
poor measurements, temporal consistency is maintained, and the perturbations manifest as
conservative segmentations (Figures 7 and 9) rather than as a noisy shape. The technique
has minimal computational complexity and can easily run at frame rate (in a MATLAB
implementation, we can achieve 2–3 frames per second or more, depending on the target size).

5. Conclusion. This paper presented the design of an observer with a probabilistic shape
representation for the purpose of improving tracking performance of segmentation-based track-
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ing algorithms. As part of the observer, generic dynamic prediction models are given, and a
local shape correction adapted to the implicit probabilistic representation is described. Exper-
iments conducted on recorded color videos, together with quantitative performance metrics,
demonstrate that the proposed observer improves both temporal consistency and tracking
robustness.

The correction algorithm currently utilizes fixed gains. Future work will involve the deriva-
tion of an optimal gain strategy for the observer based on known uncertainty levels associated
with the state estimate, the prediction, and the measurement. A further avenue of inquiry aris-
ing in the context of this study is the role of shape. Shape is necessary when there is a massive
amount of false positive image content extending over long times. Current methods use hard
shape constraints to restrict the measurement to lie within a low-dimensional parametrized
space. We suspect that a more robust approach consists of adopting looser constraints on the
measurement model while enforcing harder constraints on the correction model, in contrast
to the prevailing methods which impose hard constraints during measurement.
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