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Abstract— This paper provides a summary of several
recently detailed recursive, filtering strategies as applied
to the task of tracking deformable objects from a video
sequence. Estimation theory provides the foundation for
filtering objects based on presumed dynamics and (partial)
uncertain measurements. All of the methods seek to arrive
at an accurate contour signal in spite of measurement and
prediction errors. They differ fundamentally in the state
definition and in the estimation approaches.

I. INTRODUCTION

The task of visually tracking objects in a video sequence

is often decomposed into two parts: one for the rigid

motion of the object and the second for the shape deforma-

tions of the object. The former, also called localization, is

concerned with identifyng the gross position (and possibly

scale and/or orientation) of the object for each incoming

image in the sequence. The latter, often called segmenta-

tion, is concerned with identifying the bounding contour,

or equivalently the binary silhouette, of the object for each

image in the sequence.

Obtaining the bounding contour of an object, sometimes

called segmentation is important for a variety of reasons. It

is a fundamental component associated to many computer

vision applications, which include missile tracking [33],

cell tracking [8], full-body pose estimation [27], visual

servoing [3], and time-sequenced medical imaging [32],

amongst others.

Problems arise for algorithms requiring accurate bound-

ary information when the boundary measurements are

inaccurate. The inaccuracies arise for a variety of reasons,

including simplistic or poor segmentation models, imaging

noise, or conflicting image information. To overcome these

problems, approaches have been developed to exploit the

temporal nature of the visual signal being used for track-

ing. These approaches lie within the more general category

of estimation theory as they are effectively filtering or

estimation methods for visual tracking. For localization,

which involves the estimation of the finite dimensional

pose parameters, filtering can be achieved through a large

variety of standard filtering approaches. For the segmen-

tations, however, difficulties arise due to the infinite-

dimensional manifold nature of the bounding contour. The

difficulties have led to a variety of approaches for resolving

the problem of uncertain shape measurements.

a) Early Approaches: Early approaches to contour-

based segmentation, known as snakes, utilized spline-

based parametrizations of closed curves. The polynomial

coefficients of the splines formed a finite-dimensional state

space for the evolving curve. Filtering methods were then

applied such as Kalman filtering [22] or particle filtering

as in the condensation filter [1].

There have been efforts to move beyond parametrized

representations, such as the works in [2], [12], [19], [35].

This review paper will cover the methods found in [7],

[9], [15], [16], [18], [25], [29], [32], all of which provide

further reviews of the existing literature on estimation

theory and visual tracking.

b) Volumetric Approaches: For sequences where the

entire visual signal is available or for which a delay in

estimation is allowed, volumetric approaches are applica-

ble. These methods consider segmentation of the video

stream to be a three-dimensional volumetric segmentation

problem over the spatiotemporal volume. Many layered

segmentation methods are volumetric in nature [30], [34].

Within the context of optimal filtering, [21] derive a

method segmentation which requires access to the entire

volume.

c) Tutorial Contents: This tutorial focuses on several

recently developed recursive methods for curve estimation.

While the evolving target is considered to be decomposed

into both rigid and non-rigid components, only filtering

of the non-rigid (or shape) substate will be emphasized.

The rigid part, being a finite-dimensional substate, can

be filtered using any finite-dimensional filtering strategy

(Kalman, UKF, particle, etc.). Secondly, the technique used

to generate the shape measurement. i.e., the segmenta-

tion algorithm, will not be discussed as there are many

options for doing so [6]. The segmentation algorithm is

a matter of design and should be determined according

to the imagery. Section II covers filtering strategies based

on finite-dimensional representations for the target shape

space. Section III covers a local filtering method adapted

to an implicit probabilistic curve representation. Next,

Section IV covers methods that are derived by considering

curve geometry and calculus. Finally, Section V details

particle filtering methods that seek to move beyond finite-



dimensional curve parametrizations. The paper concludes

with Section VI.

II. LOW-DIMENSIONAL PARAMETRIZATIONS OF SHAPE

For tracking problems whereby the shape deformations

are known to lie in a low-dimensional subspace of shape

space, dimension reduction tools from machine learning

are applicable. Given that the possible shape variations of

a tracked object live within a low-dimensional subspace,

the subspace can be learned and modelled using principal

component analysis (PCA) from a collection of sample

shapes [31].

Consider an implicit representation for a closed-curve

given the iso-contour of a scalar function φ : R
2 → R,

for which a collection of representative sample shapes are

available, S = {φ1, · · · , φns
} with ns being the number

of shapes. In practice, the implicit shape functions are

defined on a discrete set of grid points, meaning that φ
is approximated by a vector in R

N where N is the total

number of grid points. Since N is large compared to the

number of shapes provided, the application of PCA leads

to a low-dimensional parametrization of the shape space,

φ = φ+

ne∑

i

αjψj .

where ne ≤ ns is the number of shape variation eigen-

modes retained, αj ∈ R, φ is the additive average of all

of the implicit shape functions, and ψj are the principle

components associated to the shape set S. Rather than uti-

lize the implicit representation φ for the low-dimensional

shape set, an equivalent representation is the collection of

coefficients that determine φ, α = (α1, ..., αne
). Collecting

all of the eigenmodes ψi into a matrix Ψ,

φ = φ+ Ψα,

leads to the finite-dimensional parametrization, α ∈ R
ne ,

of the shape space. Note that there is some freedom

to choose the implicit function φ, with signed distance

functions, binary functions, and density functions being

feasible options [7], [9], [24].

The total state-space model for tracking includes both

the rigid position and the shape. The dimension of the state

is n = nr + ne where nr is the dimensions of the rigid

sub-state and ne is the dimension of the shape sub-state.

A. Unscented Kalman Filter

To perform temporal filtering of uncertain measurements

under a finite-dimensional shape parametrization, [9] pro-

posed the use of an unscented Kalman filter (UKF), which

is a particular instantiation of a particle filter with Gaussian

uncertainty.

Given an estimate of the mean state, x̂, and the state

covariance P̂, the 2n+ 1 points and weights to use in the

particle filter are generated deterministically,

χo = x̂, ω0 = κ/(n+ κ),

χi = x̂ +
(√

n+ κP̂
)

i
, ωi = 1/(2(n+ κ)),

χi+n = x̂ −
(√

n+ κP̂
)

i
, ωi = 1/(2(n+ κ)),

and are called sigma points. The recursive UKF algorithm

begins with an estimate of the mean and covariance of the

state and generates the sigma points.

Prediction: The next step is to propogate the particles

forward under the state motion model, here denoted by f ,

χi
−(k) = f(χi(k − 1)), i = 0, 1, ..., 2n+ 1,

where k denotes the current timstep and the ·− superscript

denotes the estimate prior to correction. The predicted

particles are used to reconstruct the predicted mean and

covariance. For additive zero-mean Gaussian process noise

with covariance Q independent of state, the predicted state

mean and covariance are given by

x̂−(k) =

2n+1∑

i=0

ωiχi
−(k)

P̂−(k) =

2n+1∑

i=0

ωi

(
χi

−(k) − x̂−(k)
)

·
(
χi

−(k) − x̂−(k)
)T

+ Q.

Denote the measurement function by h. Let the mea-

surement error be additive zero-mean Gaussian noise with

covariance R independent of the process noise. The pre-

dicted mean and covariance of the measurement are

y(k) =
2n+1∑

i=0

ωih(χi
−(k))

Pyy(k) =

2n+1∑

i=0

ωi

(
h(χi

−(k)) − y(k)
)

·
(
h(χi

−(k)) − y(k)
)T

+ R.

The predicted cross-correlation is

Pxy(k) =
2n+1∑

i=0

ωi

(
χi

−(k) − x̂−
) (
h(χ−

i ) − y
)T

(1)

Measurement Method: Classically measurements are

directly obtained from sensors, however in the case of

computer vision, the sensor measurement is an image

from which the true position and shape measurements

must be extracted. This may be written as z = h(I;x)
which indicates that the measurement is generated from

the image I , which itself depends on the actual state

of the system x. It is also common in computer vision

for the measurement process to involve gradient-based

optimization of an energy with local minima.

To avoid local minimia, [9] incorporated a multiple

measurement strategy. Define the measurement function of



two arguments conditioned on the true state h(χ, I;x) to

be the net result of applying the measurement optimization

process to the image I using the state χ as an initial guess.

Further, denote by E(χ, I;x) to be the final energy of

the optimization process given by h(χ, I;x) (where lower

is better). The multiple measurement strategy defines the

actual measurement to be

z = arg minχ∈ME(χ, I;x),

e.g., given mutiple intial guesses that are locally optimized,

the measurement is chosen to be the one that is most

optimal. In [9], a sigma-point cloud around the predicted

rigid sub-state is chosen, M = M(x̂−;σ), where M is a

finite, discrete set of state elements. For a translation only

rigid sub-state, M consists of 5 initial guesses.

Correction Step: The optimal gain for the current time

step, given the predicted quantities, is L = Pxy (Pyy)
−1

.

Applying the gain to the predicted state and covariance

given a mesurement z, leads to the updated estimates:

x̂(k) = x̂−(k) + L (z − y) ,

P̂(k) = P̂−(k) − LPyy(k)L
T .

Example: Figures 1 and 2 depict the results of tracking

a one person associated to a walking couple. The region-

based method cannot track the left individual when the

couple make contact, whereas the shape-based method is

able to. Figure 3 shows that the method can handle partial

occlusions of objects. Many active contour methods would

fail to track across the occlusion or break the car into two

bounding contours.

(a) Frame 3 (b) Frame 11 (c) Frame 13 (d) Frame 20

Fig. 1. Tracking a person with only region-based energy [9]

(a) Frame 3 (b) Frame 11 (c) Frame 13 (d) Frame 20

Fig. 2. UKF Tracking of person in shape-space [9].

(a) Frame 20 (b) Frame 34 (c) Frame 50 (d) Frame 65

Fig. 3. UKF Tracking of car in shape-space [9].

B. Bayesian Filtering in Shape Space

In the works [4], [5], [7], the shape space is parametrized

using PCA and the shape dynamics of the system are

learned by fitting the finite-dimensional shape evolution

to a second-order autoregressive model,

α(k) = µ+ A1 α(k − 1) +A2 α(k − 2) + ν, (2)

where ν is zero-mean Gaussian noise with covariance Q.

The model is learned using a few examplars of object

motion. The probability of the current shape conditioned

on the previous observed shapes is

Pr (α(k)| {α(1), . . . , α(k − 1) }) ∝ exp

(
−1

2
vTQ−1v

)
,

(3)

with v = α(k)−µ−A1 α(k−1)−A2 α(k−2). Equations

(2) and (3) consider a single motion model, whereas the

work in [5] extends the problem to that of multiple models.

If desired, the dynamics can incorporate the rigid body

motion, otherwise generic or targetted motion models can

be defined for the rigid sub-state.

Under some simplifying assumption (see [4]), estima-

tion of the target state involves maximizing the conditional

probability

Pr (x(k)|I(k), {x(1), ...,x(k − 1) }) ∝
Pr (I(k)|x(k))P (x(k)| {x(1), ...x(k − 1) }) ,

which for the second-order dynamical model, is equivalent

to maximizing the probability

Pr (x(k)|I(k),x(k − 2),x(k − 1)) ∝
Pr (I(k)|x(k)) Pr (x(k)| {x(k − 2),x(k − 1) }) ,

An equivalent optimization is obtained by seeking to

minimize the negative log-likelihood of the probabilities,

where the negative log-likelihoods are now represented by

energies

E (x(k), I(k);x(k − 2),x(k − 1)) =

Emeas(x(k); I(k))+νEshape(x(k);x(k−1),x(k−2)),

where ν is a scalar variable for adjusting the relative

weighting between the two energies. The scalar ν behaves

somewhat similarly to a gain variable that modulates be-

tween trust in the measurement versus trust in the predicted

shape. The data matching energy can be any sensible

energy suited to the image sequence. The shape energy

follows naturally from Eq. (3).

The references [4], [5] both utilized a gradient descent

procedure to perform energy minimization with a signed-

distance function as the implicit shape descriptor. More

recent work [7] utilizes an implicit probabilistic represen-

tation, which models the shape as an iso-contour of a two-

dimensional scalar function whose domain is [0, 1]. The

convexity of the representation under addition is exploited

to derive a global optimization strategy, relying on iterated



(a) Frame 1 (b) Frame 30 (c) Frame 49

(d) Frame 70 (e) Frame 137 (f) Frame 164

Fig. 4. Shape-based tracking with global optimization [7].

Fig. 5. Using optimal matching energy to identify occlusions [7].

Fig. 6. Optimal estimates for two different Gaussian noise levels (σ ∈ 64, 512) [26].

Fig. 7. Average segmentation error as a function of noise level ([4] in red dashed line vs. [26] in blue solid line).

convex projections, for identifying the location and shape

of the target in an image frame. Results of the procedure

are shown in Figure 4, where a target is partially occluded

by a table and fully occluded by presentation board. Due

to the global optimization, the tracking algorithm does

not lose the target. Further, the optimal energy value

of the gloal optimization can be used to identify when

measurements are invalid. Figure 5 depicts the globally

optimal energy of the track sequence from Figure 4 for

the time period around the first full occlusion. The jump

in energy is indicative of a complete occlusion.

In [26], the finite-dimensional nature of the shape space

is exploited to identify a closed-form optimal filtering

solution, overcoming some of the key limiting assumptions

from [4]. Due to the fact that the closed-form solution

optimizes over a longer trace of the shape history, the

method is more robust to noise. Robustness to noise versus

the original approach can be seen in Figure 7, where the

closed-form solution maintains an error that is independent

of the noise level.

III. IMPLICIT PROBABILISTIC REPRESENTATION

This section revisits the implicit represention of closed

curves by the iso-contour of a density function whose

values lie in the range [0, 1]. Such a representation was

considered in [7] within in a shape-constrained setting (as

briefed in §II-B). It is also considered in [15], [18], [33]

within an unconstrained setting. This section summarizes

the unconstrained setting, covering both a general purpose

strategy with fixed gains and a specific strategy with

optimized gains given Gaussian uncertainty.

A. Geometric Filtering

The geometric filtering method to be described here pre-

sume the existence of a measurement strategy whose seg-



TABLE I

STATE MOTION MODELS

Static prior

(
ġ = 0

Ṗ = 0

Constant group
velocity

(
ġ = ξ, ξ̇ = 0

Ṗ = 0

Constant velocity (1)

(
ġ = ξ, ξ̇ = 0

Ṗ + ∇P · X = 0, Ẋ = 0

Constant velocity (2)

(
ġ = ξ, ξ̇ = 0

Ṗ + ∇P · X = 0, Ẋ + ∇X · X = 0

mentation is determined by two competing probabilities,

PrF and PrB , denoting the foreground and background,

respectively. Prior to segmentation, the two probabilities

are typically normalized so that PrB = 1 − PrF .

Assume that the image data is corrupted with noise

and that the measurement models for the foreground and

background are approximate (hence introduce additional

uncertainty). Also, assume that the uncertainty affects the

computation of the foreground/background probabilities in

a multiplicative fashion,

PrF = Pr∗F η, (4)

where Pr∗F denotes the true probability, and a similar

equation holds for PrB . Transformation by the logarithm

converts the multiplicative error into additive error,

log (PrF ) = log (Pr∗F ) + log η.

whereby standard linear filtering can be applied, pointwise.

In the original space, the additive filtering results in

geometric filtering. This section will propose a filtering

strategy for the track state, which will involve point-

wise geometric filtering of probabilistic shape sub-state.

A complete model of the state includes both position and

velocity information, x = (g, P, ξ,X), where (g, ξ) is the

rigid sub-state and (P,X) is the shape sub-state.

Prediction: The prediction step is best chosen to rep-

resent the actual physical dynamics of the target. Precise

knowledge of the target dynamics may not be available, in

which case Table I provides a collection of general purpose

static and dynamic motion models which should provide

a decent approximation.

Model Measurement: The model measurement is ob-

tained by extracting the components of the internal state

model that are equivalent to those obtained from the sensor

measurement. Typically this will be (ĝ−, P̂−) but can also

include the shape velocity X̂−.

Sensor Measurement: Measurement of the state min-

imally involves estimation of the rigid pose parameters

and also the shape of the target, hence a localization and

segmentation strategy will be needed. Once localization

and segmentation are performed on the current image, a

registration procedure is applied to match the resulting

measured probability field with the predicted probability

field, yielding a measurement gm for the group motion

and the measurement Pm for the shape. If desired, the

velocity field Xm can be measured by computing the

optical flow [11] between two subsequent aligned images.

In practice, the group velocity ξ is not directly measurable.

The measurement proper can utilize any segmentation

technique so long as the final result is of the form of an

implicit probability field.

Correction: Correction on the probability field is

achieved through geometric averaging. Given the predicted

probability field, P̂−, and the current measured probability

field, P̂m, the current corrected probability field, P̂ , is

P̂ (r) =
(
P̂−(r)

)1−Kxx
(
P̂m(r)

)Kxx

,

where Kxx varies in the range [0, 1] and is chosen based on

uncertainty estimates of the measurement and the predic-

tion. Low Kxx is biased towards the predicted probability,

high Kxx is biased towards the measured probabilities.

This method works when the prediction and measured

probability fields dot not differ radically.

When the two fields have sufficient disparity, the geo-

metric averaging technique no longer works due to non-

local shape effects. Instead, an error vector field Xerr

needs to be computed between the predicted and measured

densities. Flowing along the error vector field should take

P− to Pm in unit time. The error vector field between the

two densities can be computed using a variety of methods,

such as optical flow, displacement flow or optimal mass

transport [20], [23]. The correction is then given by

P̂+ = ΦXerr

Kxx
(P̂−),

where ΦXerr

Kxx
denotes the flow along Xerr for time Kxx.

In practice, we did not find this to be necessary.

The velocity field is much simpler to correct on since

it is a vector space. There are two ways to induce a

correction on the velocity field, one is through an error

in the measured probabilities and the other is through an

error in the shape velocities:

X+ = X− +KvxXerr(Pm, P
−) +Kvv(Xm −X−)

where Xerr(Pm, P
−) is as defined above. The parameters

Kvx and Kvv vary in the range [0, 1] and are chosen

according to uncertainty estimates of the measurement and

prediction.

Example: Figure 8 depicts the tracking results for an

image sequence which contains measurement error due to

overlapping distributions. The frames, from left to right,

depict the lowest error segmentation, a typical segmen-

tation, and the largest error segmentation (misclassified

pixels). The overlapping distributions cause the measure-

ment error to be large on a few frames. The measurement

error arises from regions of the image that have intensities

at the decision boundary, which causes the segmentation



(a) Snapshot

 43  96 156
Frame

(b) Deformotion

 42  89 156
Frame

(c) Probabilistic Contour Observer

Fig. 8. Tracking results for sequence with overlapping distributions [18].

boundary to fluctuate by a large amount. Notice that the

deformotion filter [12], which is strictly contour-based

has difficulties recovering. The probabilistic method does

not blow-up. Since the probabilistic estimator maintains a

history of all interior and exterior pixels, uncertainty in the

boundary region is temporally smoothed.

B. Optimal Geometric Filtering

This section consider a more explicit measurement

model, Bayesian segmentation, and derives an optimal

filtering strategy given Gaussian uncertainty. Additional

details can be found in [18].

Consider an image I defined over a compact domain

of the plane and taking values in R. Further, assume that

measurement of the pixel intensities has been corrupted by

additive Gaussian noise ν with zero mean and variance σ2
ν .

Classification is performed through Bayesian segmentation

[10] with two classes: foreground and background. The

two classes are modelled with a Gaussian distribution

for the pixel intensities. Assuming uniform priors and a

normal distribution N (µF , σ
2
F ) for the foreground pixels,

then the measured likelihood for the corrupted pixel I(r)
to be classified as foreground is given by:

ζF (r) =
√
δ · e−

1
2

“
I(r)+ν(r)−µF

σF

”2

,

where δ is a positive normalizing factor. The expression

for the measured likelihood can be expanded further:

ζF (r) =
√
δ·e−

1
2

“
I(r)−µF

σF

”2

e
−

1
2

“
ν(r)
σF

”2

e
−

„
ν(r) (I(r)−µF )

σ2
F

«

,
(5)

which can be rewritten as

ζF (r) = PF (r) · η(r;µF , σF ),

where PF (r) consisting of the first two terms from (5)

is the true classification likelihood, and η(r;µF , σF ) con-

TABLE II

FILTERING EQUATIONS FOR VISUAL TRACKING

Prediction

{
ρ̂−k = ρ̂+

k−1

P̂−

k = P̂+
k−1 +Q

Update





Kk = P̂−

k (P̂−

k +R)−1

ρ̂+
k =

(
ρ̂−k

)1−Kk · (ζk)
Kk

P̂+
k = (1 −Kk)

2
P̂−

k +K2
k R

sisting of the remaining two terms is the class measure-

ment noise. A similar derivation holds for the background

classification densities. Corruption by additive noise on

the image data results in multiplicative uncertainty for the

foreground/background likelihoods.

Filtering: As noted in Section III-A, geometric filtering

is the net result of seeking a mechanism to temporally

filter the uncertain segmentations. When coupled with the

Bayesian segmentation algorithm, an explicit method of

the optimal pointwise geometric filter is derivable [18].

Endowing each pixel probability ρ with a covariance P ,

leads to the prediction and update equations in Table II,

where the subscript k indicates the discrete time step.

Based on the description of the design, the optimal

estimation algorithm can be summarized as follows:

1) Estimate the additive imaging noise prior to the

visual tracking process.

2) For every pixel, run two filters to estimate the

foreground and background likelihoods (P̂F (r) and

P̂B(r)):

a) at the prediction step, run the corresponding

equations in Table II to obtain the predictions.

b) obtain a measurement by taking the classifica-

tion likelihood given by Bayesian segmentation



(a) Original Image

(b) Corrupted Image

 64  94 120
Frame

(c) Ground Truth (cropped)

 64  94 120
Frame

(d) Optimal Estimator (cropped)
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(e) Comparison (# of Misclassified Pixels vs. Time)

Fig. 9. Optimal point-wise target estimation using geometric filtering of probabilistic contours [18].

on the current image.

c) at the update step, run the corresponding equa-

tions in Table II to obtain the updates.

3) The estimated classification probability field is ob-

tained by normalizing the likelihood estimates pre-

viously obtained: P̂F

P̂F +P̂B
. The 50% contour of this

probability field defines the bounding contour of the

target.

Example: Figure 9 depicts a tracking scenario corrupted

with Gaussian noise. A comparison of the misclassified

pixels per frame shows that the optimal filter for the im-

plicit probabilistic shape representation is able to optimally

filter out the temporally uncertainty. The comparison meth-

ods, active contour (AC) and deformotion, were manually

tuned for optimal performance.

IV. CURVE-SPACE REPRESENTATIONS

For object shapes that are not constrained to lie in a

lower-dimensional submanifold, approaches that are con-

sistent with the manifold structure have been developed.

These are methods that attempt to derive as much of

the underlying mathematics within the space of curves,

then seek the appropriate representation and algorithms

that can reproduce the derived mathematics. The infinite-

dimensional manifold structure of the space of smooth,

closed planar curves means that there is no unique structure

to the shape description, and consequently not a unique

approach to filtering.

A. Local Kalman Filtering Using Transverse Coordinates

The curve estimation method described in this section

relies on the existence of a local error metric between

two smooth, closed planar curves C0 and C1. Given the

two curves, a characteristic error vector field Xchar can

be obtained by solving a series of Laplace and Poisson

equations with boundary conditions [20]. The character-

istic curves of the error vector field are non-intersecting,

they approach the curves C0 and C1 from normal directions,

and their speed never vanishes. For a particle x0 ∈ C, its

traveling distance, d, at position x along the characteristic

of Xchar through x0 is defined as the arc-length of the

characteristic curve connecting x0 and x. Measuring these

traveling distances from a complete set of initial locations

is obtained by solving
{
d(·, 0) = 0,

dτ +XT
char ∇xd = 1,

where τ is an artificial time parameter for the PDE

equation and d : R
2 × R

+ → R. Figure 10(a) an example

of the distance map obtained, whiile Figure 10(b) depicts

the transverse curves for segments of two curves.

For the curve C local to C0 and C1, the traveling distance

map and its characteristics define a 1D family of transverse

coordinate frames. Let s be the arc-length parameter of the

curves in question, and assume that C0(0), C1(0) and C(0)
lie on the same characteristic. Then at C(s) the associated

transverse curve intersects, for example, the curves C0 and

C1, at the same arc-length parameter s. The coordinate

location on the transverse curve of the curve point C0(s)
is given by

sd(C0(s); C(s)) = d(C0(s), 0), with C = d−1(·, 0),

where sd(p; C) describes the signed traveling distance from

a point x to its corresponding point on C. The distance is

negative when x lies interior to C and positive exterior

to C. Figure 10-(b) depict the coordinate system (in blue)

along one of the transverse curves (where C is in red).

The goal of the filtering process is to arrive at estimates

of the curve and its normal velocity, denoted by Ĉ and

β̂, respectively. To explicitly exploit the fact that these

transverse curves have their own coordinates, we will

specify the coordinates on the transverse line of a particular

curve point Ĉ(s) by x(s), whose value is given by x(s) =
sd(Ĉ(s); C(s)), where C(s) is presume to be the true curve
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(a) Distance map for red curve given a comparison curve.

(b) Transverse curves. (c) Transverse coordinates.

Fig. 10. The topology and geometry of curve comparison and transverse
curve coordinates. The red curve in (c) is the true curve.

state. This notation is called the point-notation for the

curve. In addition to the curve states, the rigid motion

of the curve also forms part of the state, x = (g, C).
If the rigid velocity is included, then x = (g, C, ξ).
for the Kalman filter, the state covariance will also be

modelled and propogated. To explicitly indicate that the

curve is time varying consider the functional dependence

to be C(k, s) where k is the time-step and s is the

arc-length parametrization. For simplicity, the arc-length

parametrization will sometimes be omitted.

Prediction: The work in [16] applies only to a static

prediction model on the curve, which means that:

Ĉ−(k) = Ĉ(k − 1),

P̂−(k) = P̂ (k − 1) +Q,

where P̂ is the estimated curve covariance (defined along

the curve). Work in [17] extends the state space to the case

of dynamically evolving curves. The rigid sub-state ĝ or

(ĝ, ξ̂) evolves as first or second order system, respectively.

Model Measurement: The predicted measurements are

extracted directly from the predicted state. Due to the

available sensor measurements, the measurement model

extracts at most the rigid state and the curve, (ĝ, Ĉ).
Sensor Measurement: The sensor measurement follows

similarly to the probabilistic contour approach (§III),

where measurement of the state minimally involves esti-

mation of the rigid pose parameters and also the shape of

the target through a localization and segmentation strategy.

Registration is needed to match the resulting contour to

the predicted contour yielding a measurement gm for the

group and the measurement Cm for the shape.

Correction: As with the probabilistic contour, the group

(a) Sample image.

  6  35 102
Frame

(b) Ground Truth

  6  35 102
Frame

(c) Active Contour

  6  35 102
Frame

(d) Local Kalman filter

Fig. 11. Tracking snapshots and comparison for baseline active contour
measurements versus local Kalman filtered estimates [16].

correction is a finite-dimensional state and can therefore

be filtered using standard methods with relative ease.

Depending on the prediction motion model chosen (linear

vs. nonlinear), finite-dimensional filtering such as Kalman,

extended or unscented Kalman are appropriate to use in

order to correct the measured group.

Correction on the shape requires the construction of the

transverse coordinates, which requires the characteristic

vector field using the predicted and measured curves. The

correction applied to the curve, in point notation, is then

x̂(s) = x̂−(s) +K(xm(s) − x̂−) = Kxm(s),

since the predicted curve is at the origin. The curve state

Ĉ(k, s) is uniquely reconstructed by x̂(s). The gain chosen

is the optimal gain

K = P̂−(k)
(
P̂−(k) +R

)−1

,

where R gives the curve measurement covariance. Asso-

ciated to this gain is the covariance update

P̂ (k) = P̂−(k) (1 −K)

Example: Figure 11 depicts a sample frame and the

tracking results for the base measurement strategy utilizing

active contours plus the local Kalman filter. The ground

truth segmentations are also provided for comparison.

Table III gives quantitative tracking results for a variety of

tracking algorithms, each comparison algorithm is manu-

ally optimized. Strikeout indicates loss of track, in which

case the quantitative results are until shortly prior to track

loss. Of note, only the local Kalman filter is able to track

the entirety of the sequence.

B. Filtering Using Curve Geodesics

The work in [28] examines the underlying geometry

of the space of smooth, closed planar curves (modulo



Metric\Algorithm Active Contour Deformotion Shape Observer

Trackpoint error (L2/L∞) 2.2/6.6 2.2/9.6 7.6/18.6 1.8/6.2

# Misclassified Pixels (avg/max) 78/202 72172 87/160 63/111

Mean Laplace (avg/max) 1.0/3.7 0.9/3.1 3.4/8.4 0.7/1.3

Max. Laplace (avg/max) 2.9/8.9 2.3/7.9 3.4/8.4 2.0/3.5

# Frames Tracked 109 109 115 350

TABLE III

PERFORMANCE TABLE USING QUANTITATIVE COMPARISON METRICS [16].

Fig. 12. Tracking a synthetic deforming circle through a total occlusion. This experiment demonstrates the need for the dynamical model that
extrapolates shape. In the first few frames, where there is no occlusion, the image segmentation (green) alone correctly follows the shape evolution.
However, when the occlusion appears, the image segmentation is uninformative, and the dynamical model extrapolates the shape (red) and velocity
(blue) of the contour (middle frames). A dynamical model with only affine motion (top row) cannot extrapolate the deformation. The infinite-

dimensional model, on the other hand, correctly predicts the evolution towards a bi-lobate shape. Red: bC−(k); blue: bβ−(k) and green: Cm(k) [28].

reparametrizations) to arrive at a manifold and geodesic

structure for this space. The essential contribution re-

volves around the calculus of a Sobolev-type, Riemma-

nian metric for the space of smooth, closed curves, and

builds on recent developments regarding the geometry of

closed curves [13], [14]. Through the Sobolev-type metric,

geodesic paths connecting curves are found. The paths

are defined modulo curve translation and scale changes,

which leads to a representation for the curves as ele-

ments of the Stiefel manifold St(2, Vod), where Vod ≡{
f : S

1 → R | f(0) = −f(2π)
}

.

The curve filter designed using curve geodesics consid-

ers a constant velocity prediction model with perturbation

noise at the velocity level, and a curve measurement model

with noise. The curve estimate is given by Ĉ ∈ B and

the tangent to the curve is given by β̂ ∈ T bCB. The

manifold B is the space of smooth, closed planar curves

modulo reparametrizations. Corrections will occur at the

velocity level, although [28] do briefly describe how to

perform corrections at the curve level. The procedure

below summarizes the resulting Luenberger observer on

B; for implementation details, see [28].

Prediction: Exploiting the geodesic structure defined on

B, the dynamical prediction model is

Ĉ−(k) = expbC(k−1)

(
β̂(k − 1)

)
,

β̂−(k) = PbC(k−1), bC−(k)

(
β̂(k − 1)

)
,

where the exp is defined by geodesic flow of the curve

along the curve tanget β(k − 1), and PbC(k−1), bC−(k) in-

dicates parallel transport of the tangent vector along the

geodesic connecting the curve Ĉ(k − 1) to Ĉ−(k).
Model Measurement: The model measurement is the

curve proper Ĉ−(k).
Sensor Measurement: The measured curve is obtained

through any segmentation algorithm capable of providing a

closed curve indicating the boundary of the tracked object.

The measurement is denoted by Cm(k).
Correction: The correction for the curve is applied at

the curve velocity level, which will induce a correction on

the state during the prediction step. It is given by

Ĉ(k) = Ĉ−(k),

β̂(k) = β̂−(k) +K log(Ĉ−(k), Cm(k)),

where the log term gives the tangent vector element whose

geodesic flow goes from Ĉ−(k) to Cm(k), and K ∈ R is

the correction gain.

Examples: To visualize the benefits of evolving the

curve, rather than considering a static curve undergoing a

group transformation, consider the two scenarios depicted

in Figure 12. During the period of the occlusion, there

are no measurements to correct the predictive models. The

affine transformation model cannot adequately predict the

changes in the curves, whereas the prediction model based

on geodesic flow can more accurately predict the curve

state after the occlusion ends. Figure 13 considers the

underwater visual tracking of a flatworm.

V. PARTICLE FILTERING

Particle filtering on the shape manifold poses a few

difficulties, the primary of which is the dimensionality

of the state space. This section presents two strategies,



Fig. 13. Tracking a flatworm (left to right, top to bottom) using the

proposed filtering technique: the red curve is bC−(k) the blue arrows

are bβ−(k − 1), and the green curve is the measurement Cm(k). This
experiment demonstrates the dynamics of the contour and deformation
under the constant velocity plus perturbation model, which correctly
models the dynamics of the flatworm [28].

one which implements a complete particle filter for the

rigid pose sub-state and a mode-based particle filter for

the shape sub-state, and the second which approximates

the local deformations with a finite-dimensional basis that

is updated over time. The two techniques implement a full

particle filter on a sub-state and a posterior mode particle

filter on the complementary sub-state. The posterior mode

filter replaces all particle estimates of the sub-state with

the current mode as the correction step. Details can be

found in [25], [32].

First, a state model will be described, followed by the

specific instantiations associated to the two particle filters.

The general state model consists of a closed planar curve

C : R → R
2, a group transformation g, and also a shape

deformation along the curve normal β : R → R defined on

the curve. Note that the group transformation acts on the

curve as g ·C, which effectively transforms the curve points

according to the group motion (translation, SE(2), affine,

etc.). As defined, the deformations will naturally transform

appropriately since the curve deformation is constructed

using v = βN , where N is the curve normal.

A. Affine, Posterior Mode Particle Filtering

In [25], the group transformation is affine transformation

and the shape deformations are neglected, thus x = (g, C).
A particle filter is defined on the group sub-state (affine

transformations), while a posterior mode tracker is defined

on the shape sub-state (level-set representation). Beginning

with a collection of samples that represent the current

state distribution, the affine, posterior mode particle filter

proceeds as follows:

Prediction: All of the particles need to be propogated

under the motion model, which in this case involves

dynamic propogation of the group motion with a static

shape prior,

ĝ−i (k) = f(ĝi(k − 1)), Ĉ−

i (k) = Ĉi(k − 1),

followed by the affine transformation of the curve

Ĉ−

i (k) = g−i (k) · Ĉ−

i (k).

Model Measurement: The predicted measurement den-

sity is the collection of estimated curves Ĉ−

i and their

weights, ωi.

Sensor Measurement: The collection of predicted par-

ticles is used to generate the sensor measurement given

an image. In [25], the proposed sensor measurement

involves running an iterative optimization-based segmen-

tation strategy for a limited amount of iterations (not to

convergence). The function to minimize is the energy

functional Emeas(C; I), which defines an error energy

associated to the curve C given the sensed image I . The

segmentation strategy is run for each particle state using

the particle contour Ĉi as the initial condition for the

iterative algorithm, leading to the measurement Cm
i .

Correction: To perform correction, the weights are re-

computed using importance sampling as per,

ω̃i(k) = exp
(
−Emeas(Ĉi(k), I(k))/σ

2
d

)

· exp
(
−d2(Ci(k), Ĉ(k − 1))/σ2

p

)
,

where d(Ĉi(k), C(k − 1)) is a discrepancy measure on

the space of curves (set symmetric difference, Haussdorf

distance, etc.) from which the updated weights are

ωi(k) = ω̃i(k)/

N∑

j=1

ω̃j(k).

The sample with the largest weight is the estimated curve

for the current timestep. Prior to repeating the procedure

for the next timestep, the distribution should be resampled,

according to the current estimated distribution, to obtain

N particles each with the same weight 1/N .

Examples: Figures 14 and 15 depict two tracking

scenarios. In both cases there is significant interframe

motion, while the van scenario also includes occlusion of

the track target. Comparison with the condensation filter

in [25] shows that the affine, posterior mode filter is quite

competitive, requiring fewer particles to successfully track.

B. Particle Filtering on Highly Deforming Shape Spaces

The posterior mode tracker described in §V-A has

been extended in [32] through the consideration of finite-

dimensional parametrized models for the shape deforma-

tions. In particular, the work presumes that β can be

approximated through a finite collection of control points

on the curve for which the normal deformation is known;

the deformations over the entire curve are obtained through

B-spline interpolation. Furthermore, the control points are



Fig. 14. Van Sequence: Tracking of target with occlusion and scale variation [25]

Fig. 15. Plane Sequence: Tracking with 30 particles. Images have been cropped for better visualization [25].

broken up into two disjoint sets forming complementary

vector spaces, β = βs ⊕ βr, one of which models the

dominant shape variation and the other which models

small, normally distributed shape variations.

The state space of the system is augmented appropri-

ately to be x = (g, C, βs, βr), where βs are the parameters

of the effective basis deformation, while βr are the pa-

rameters of the residual basis deformation. Together, βs

and βr, define the vector β which is used to reconstruct

the shape deformation of the curve C (behaving, in a

sense, much like a finite dimensional approximation of

the curve velocity state). While [32] spends some time

discussing parametrization choices for the deformations,

this review paper will simply state that any choice of finite-

dimensional interpolation strategy will work and focus

instead on the filtering strategy required.

The state space is partitioned into two components,

one of which is presumed to be affected by zero-mean

Gaussian noise only, and the other which evolves in time

and is perturbed by zero-mean Gaussian noise. The former

is (C, βr) and the latter is (g, βs). For the former sub-space,

a posterior mode tracker will be applied, whereas the latter

will be estimated using a full particle filter. Consider a

collection of estimate states xi with associated weights

ωi used to generate the state distrubution. The estimate is

propogated in time as follows:

Prediction: The prediction equations for the particles

are:

ĝ−i (k) = Ag ĝi(k − 1),

β̂−

s,i(k) = Aβ,sβ̂s,i(k − 1),

βr,i(k) = βr,i(k − 1),

C̃i(k) = Ĉi(k − 1) + ĝi(k) + β̂s Ns,

Ĉ−

i (k) = C̃i(k) + βr,i Nr,

where A· represents a linear transition matrix for updating

the finite-dimensional sub-states, and N· is the normal

vector to the curve associated to the appropriate shape

deformation basis.

Model Measurement: The predicted measurement den-

sity is the collection of estimated curves Ĉ−

i and their

weights ωi.

Sensor Measurement: The collection of predicted parti-

cles is used to generate the sensor measurement given an

image. Measurements are obtained by running an iterative

optimization-based segmentation strategy for a limited

amount of iterations (not to convergence). In [32] the

energy functional Emeas(C; I) to minimize includes both

region-based terms and edge-based terms. The segmen-

tation strategy is run for each particle state using the

particle contour Ĉi as the initial condition for the iterative

algorithm, leading to the measurement Cm
i .

Correction: To perform correction, the weights are re-

computed using importance sampling as per,

ω̃i(k) = ωi(k − 1) · exp
(
−Edata(Ĉi(k); I(k))/σ

2
d

)

· exp
(
−d2(Ci(k), Ĉ(k − 1))/σ2

p

)
,

where d(Ĉi(k), C(k − 1)) is a discrepancy measure on

the space of curves (set symmetric difference, Haussdorf

distance, etc.) from which the updated weights are

ωi(k) = ω̃i(k)/

N∑

j=1

ω̃j(k).

The sample with the largest weight determines the cor-

rected estimate for the (C, βr) sub-state. All particle es-

timates for this sub-state are replaced by the estimated

mode. Prior to repeating the procedure for the next

timestep, the distribution should be resampled, according

to the current estimated distribution. For the new set of N
particles, each particle has the same weight 1/N .

Example: Figure 16 depicts a tracking scenario for the

posterior mode particle filter with parametrized deforma-

tions. It does not get confused by the background circle

in spite of the false edge information and umodelled color

distribution.

VI. CONCLUSION

This paper reviewed recent approaches to estimating

the evolving shape of a tracked deformable target given

approximate evolution models and uncertain measure-

ments. Parametrized shape-space, implicit probabilistic,



Fig. 16. Tracking through two non-affine contour modes of the likelihood and avoiding distractions by false edges [32].

and curve-based estimation models were reviewed, in addi-

tion to posterior mode particle filtering strategies. Except

for the shape-based models, the methods detailed derive

estimation strategies for curve measurements that are un-

constrained, allowing for large contour deformations.
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