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Abstract— Online contour-based tracking is considered
through the estimation perspective. We propose a recursive
dynamic filtering solution to the tracking problem. The
state of the target is described by a pose state which
represents the ensemble movement and a shape state which
represents the local deformations. The shape state of the
filter is described implicitly by a probability field with
prediction and correction mechanisms expressed accord-
ingly. The filtering procedure decouples the pose and
shape estimation. Experiments conducted with objective
measures of quality demonstrate improved tracking.

Index Terms – Contour tracking, Online visual track-
ing, Recursive filtering.

I. I NTRODUCTION

This paper considers the problem of faithful contour-
based target tracking under imaging noise and approx-
imate target/background models. Many contour-based
techniques view the problem as a detection problem over
the individual frames of a given image sequence [2].
However, methods that take advantage of the underlying
natural coherence and consistency of the target should
provide improved tracking.

Temporal consistency has been used to update the
initialization of the detection algorithm at subsequent
times [1]. Alternatively, it has been used to process a se-
quence volumetrically. Such batch processing techniques
[10], [12] can successfully recover a solution (through
the entire video) that guarantees global coherence and
fitness to the measurements by processing the entire
sequence at once or several frames before and after the
current one. We are interested in an online, recursive
method that does not require access to future frames.

The tracking problem can be viewed as an estimation
problem given temporally correlated measurements. Re-
cursive filters are derived from a Markov assumption
on the temporal state history. Many existing recursive
methods usually include reduction of the shape space
to a finite-dimensional approximation through PCA,
ICA or kernel PCA [4], [5]. Finite-dimensional filtering
strategies are then applicable, however, their design
requires a careful choice of the training set, a reduction
analysis, and possibly a learning phase to estimate
the state evolution model in the reduced space [9].
Unfortunately, these techniques are unable to cope with

elastic targets whose geometry and shape can drastically
change through time; this is known as the out-of-sample
problem. The main difficulty resides in the infinite
dimensionality of the shape manifold. An alternative
consists in avoiding finite-dimensional approximations.

The principal contributions of this paper are: the
definition of a recursive estimator on a dynamic target
state and the quantitative validation of its performance.
The target state model is decomposed into group and
shape, with independent filtering stategies on each sub-
state. A second-order model incorporating dynamics is
presented that handles non-rigid shape deformations. A
probabilistic model is used to describe the shape space
and a novel correction mechanism is presented.

The paper is organized as follows. Section II describes
the recursive shape filter, which covers the prediction,
measurement and correction steps. Section III details
experiments conducted and verified using objective per-
formance metrics. Section IV concludes the paper.

II. RECURSIVE FILTER DESCRIPTION

A. State Description and General Overview

The state model for the filter must describe the target
and the movement of the target in time. The state model
chosen follows [13], which defines such movement as
being composed of a rigid motion followed by a local
deformation. The state decomposition into pose and
shape is calleddeformotion[13]. To define a recursive
dynamic filter on the dynamic system, the pose velocity
and shape velocity must also exist in the state model.

The group variableg is described bySE(2) or
its subgroupE(2), describing the group motion as a
composition of translation and rotation or as a transla-
tion, respectively. Its associated velocity is denoted by
ξ. In this work, the shape is implicitly defined by a
probability fieldP representing the probability that each
pixel belongs to the target. The50% probability contour
determines the bounding contour of the target. The shape
velocity is a vector fieldΘ defined on the domain of the
implicit shape descriptorP . Thus, the internal state of
the recursive filter consists of(g, ξ, P, Θ). The recursive
filtering structure proposed is depicted in Figure 1. It is
a predictor-corrector procedure described below.
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Fig. 1. Visual tracking recursive filter structure.

B. Prediction

The prediction is based on prior knowledge regarding
target movement. Here, we provide a general constant
velocity motion model for the full filter state

ġ = ξ, ξ̇ = 0,

Ṗ = ∇P · Θ, Θ̇ = 0.

C. Measurement

Measurement of the system involves, at most, the
determination of the four sub-states(g, ξ, P, Θ). In
practice, ξ is not directly measurable. Note that the
measurement block is not a part of the filter, but an
external operation providing input to the filter. Any
segmentation algorithm can be used to generate the
measurements. The segmentation leads to the measured
states as follows.

1) Group and Probability Field Measurement:If the
segmentation is not a probability field, then additional
processing may be required in order to convert the initial
output of the segmentation algorithm into a probability
field. For example, if an active contour segmentation
technique producing signed distance functions was used
to generate the measurements, then the processing would
transform the signed distance function into a probability
field, with the zero level set matching the 50% contour.

The segmentation is registered against the predicted
state. The registration procedure thus identifies the co-
ordinates of the two constitutive components(gm, Pm).

2) Velocity Field Measurement:There are several
feasible methods for generating the shape velocity mea-
surement. The method used here is the optical flow
field [7] between the current target image data and the
previous target image data (after the registration step
described above). There is abundant literature about
computation of the optical flow field.

D. Correction

Given prediction and measurement, the correction
step generates an updated estimate of the target state.
In the following, the subscriptm, and superscripts−

and + denote measurement, prediction and correction,
respectively. As the pose and shape corrections are
decoupled, we describe them separately.

1) Group: Since the pose and its velocity,(g, ξ) are
finite dimensional, correction can be performed through
standard filtering methods. For example, given linear
dynamics, Kalman filtering can be used.

2) Shape:Due to the infinite dimensional nature of
the shape state, a unique correction method does not
exist. In the following, we define a novel correction
scheme on the probabilistic shape space.

Geometric Blending:Correction of the shape consists
of the weighted geometric mean of the predicted and
measured probability fields, and their complements,

P+ = (P−)
1−K

· (Pm)
K and

Q+ = (1 − P−)
1−K

· (1 − Pm)
K

,

after whichP+ andQ+ are normalized, but onlyP+ is
kept. The parameterK lies in the range[0, 1] and is de-
fined by the user according to measurement noise. Low
K indicates high measurement noise, with correction
biased to the prediction. HighK indicates the opposite.

3) Shape Velocities:The shape velocity is a vector
field, thus it resides in a linear space. Corrections are
induced on the velocity field through errors in the
measured probability fields and/or the measured image
velocities:

Θ+ = Θ− + Kvx · Xerr(Pm, P−) + Kvv · (Θm − Θ−)

One way to generate the error vector field
Xerr(Pm, P−) is to compute the optical flow between
the measured and predicted shapes. The parameters
Kvx and Kvv vary in [0, 1] and are chosen according
to the measurement noise.

III. E XPERIMENTS AND RESULTS

We conducted experiments to demonstrate the ability
of the proposed filter to enhance contour-based trackers
and provide consistent tracking under perturbations. Due
to space constraints, results of three representative video
sequences are presented: a synthetically noise-corrupted
infrared sequence from the OTCBVS dataset, a color
sequence featuring a working man whose body shape
varies, and likewise a swimming fish. Ground truth for
the sequences consists of manual track point determi-
nation and manual segmentations. Using the ground
truth, quantitative performance evaluations are obtained
through objective measures of quality. For the group
variable, we use theL2 and L∞ errors of the pose
signal. For the shape variable, frame-wise we computed
the number of misclassified pixels, the Hausdorff and
Sobolev distances [3], [14], and the number of tracked
frames per sequence. Strikeouts indicate loss of track
(metrics are computed up to track loss).



Several contour-based trackers were implemented to
provide comparison. They include Bayesian segmenta-
tion [6], active contours (AC) [11],deformotionfilter-
ing [8], and the shape-based method described in [4]
modified to incorporate a Kalman filter on the shape
space. Bayesian segmentation is the base measurement
strategy for the proposed anddeformotionfilters. Where
applicable, the pose state was Kalman filtered.

The depicted frames for each sequence (Figs 2-4) are:
(left frame) the lowest error obtained, (middle frame) a
frame with average error, and (right frame) the largest
error obtained. Quantitative results are summarized in
Table I, where the average and maximum for each shape
metric/sequence are displayed. Visual inspection of the
tracked videos corroborates the numbers.

The filter improves upon the unfiltered method
(Bayesian segmentation), and equals or outperforms the
comparison algorithms (lower metric values are better).
Table I-d also shows that the proposed filter can acco-
modate alternative segmentation strategies.

The proposed filter has a low computational cost: our
sub-optimal Matlab implementation can process about
three frames per second. Significantly higher frame rates
(up to real-time) can be achieved by considering imple-
mentations on dedicated architectures such as GPU’s.

Frame 50

(a) Sequence 1

 22 121 159
Frame

(b) Ground Truth 1

67 89  6
Frame

(c) Bayesian

 11 113  61
Frame

(d) Active Contour

117 133   6
Frame

(e) Deformotion

 83  29 152
Frame

(f) Shape-based

67 95 30
Frame

(g) Filtered Bayesian

Fig. 2. Snapshots of Sequence 1.

Frame 50

(a) Sequence 2

 18 295 450
Frame

(b) Ground Truth

 26 119  67
Frame

(c) Bayesian Tracker

  5  96 107
Frame

(d) Active Contour

 92 127  68
Frame

(e) Deformotion

132  50  15
Frame

(f) Shape-based

 50   2 108
Frame

(g) Filtered Bayesian

Fig. 3. Snapshots of Sequence 2.

Frame 50

(a) Sequence 3

  4  77 117
Frame

(b) Ground Truth 3

 43  96 156
Frame

(c) Bayesian Tracker

113   6 175
Frame

(d) Active Contour

121  56 168
Frame

(e) Deformotion-based Tracker

 54 100 181
Frame

(f) Shape-based

 42  89 156
Frame

(g) Filtered Bayesian

Fig. 4. Snapshots of Sequence 3.



(a) Sequence 1
 
 

Metric \ Algorithm Bayesian AC Deformotion Shape Filtered Bayesian 

Trackpt error    (L2/L� ) 1.8 / 4.4 1.4 / 3.9 1.2 / 3.4 3.0 / 10.5 1.2 / 4.4 

NMP              (avg/max) 129 / 242 91 / 160 116 / 211 105 / 199 90 / 155 

Hausdorff      (avg/max) 6.2 / 13.5 4.5 / 9.5 4.0 / 6.7 3.9 / 7.7 3.5 / 6.6 

Sobolev         (avg/max) 3.2 / 10.5 2.4 / 6.9 1.5 / 3.6 1.5 / 5.4 1.2 / 3.3 

# Frames tracked 180 180 180 180 180 

 
 
 

(b) Sequence 2 
Metric \ Algorithm Bayesian AC Deformotion Shape Filtered Bayesian 

Trackpt error     (L2/L� ) 8.6 / 13.2 2.8 / 7.0 2.6 / 12.3 5.6 / 15.8 2.7 / 5.8 

NMP               (avg/max) 251 / 969 244 / 549 248 / 769 575 / 833 279 / 478 

Hausdorff       (avg/max) 10.9 / 18.4 11.1 / 19.2 12.3 / 19.7 12.0 / 22.5 14.6 / 20.7 

Sobolev          (avg/max) 8.2 / 52.9 12.9 / 95.8 11.9 / 46.7 13.2 / 43.9 12.9 / 26.9 

# Frames tracked 477 478 477 475 478 

 (c) Sequence 3 
Metric \ Algorithm Bayesian AC Deformotion Shape Filtered Bayesian 

Trackpt error     (L2/L� ) 16.6  / 24.4 11.5 / 52.3 7.9 / 16.0 5.4 / 12.3 8.0 / 15.5 

NMP                (avg/max) 253 / 1420 288 / 1328 202 / 755 299 / 536 171 / 508 

Hausdorff        (avg/max) 10.2 / 35.0 30.0 / �  7.8 / 26.2 10.9 / 25.8 7.7 / 27.4 

Sobolev           (avg/max) 8.2 / 70.6 100.0 / �  5.8 / 35.3 11.7 / 38.1 6.5 / 81.8 

# Frames tracked 200 150 200 200 200 

 (d) Sequence 3 using Graph Cut and Active Contour segmentations with proposed filter. 
Metric \ Algorithm Filtered AC  Graph Cut Filtered Graph Cut  

Trackpt error            (L2/L� ) 6.5 / 22.1 7.9 / 31.1 6.9 / 27.4 

NMP                      (avg/max) 192/ 663 288 / 1014 219 /457 

Hausdorff              (avg/max) 8.3 / 25.4 12.8 / 32.0 11.7/ 25.9 

Sobolev                 (avg/max) 6.2 / 35.8 8.3 / 70.8 10.2/ 80.1 

# Frames tracked 200 200 200 

 
 

TABLE I

TABLES OF PERFORMANCE STATISTICS FOR THE TRACK SEQUENCES.

IV. CONCLUSION

We have presented the design of a recursive dynamic
filter for the purpose of tracking consistently through
imaging perturbations. Objective measures of quality
demonstrated that the proposed filter achieves temporal
consistency and is equal to or more effective than other
tracking algorithms in an online, recursive estimation
setting. It does not require any training and has low
computational cost.
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