
Noise Estimation and Adaptive Filtering During Visual Tracking

Ibrahima J. Ndiour and Patricio A. Vela
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332-0250

Abstract— This paper proposes a procedure to char-
acterize segmentation-based visual tracking performance
with respect to imaging noise. It identifies how imaging
noise affects the target segmentation as measured through
local shape metrics (Sobolev and Laplace metrics). Such
a procedure would be an important calibration step prior
to implementing a visual tracking filter for a given need.
We utilize the Bhattacharyya coefficient between the target
and background intensity distributions to estimate the
segmentation error. An empirical study is conducted to
establish a correspondence between the Bhattacharyya
coefficient and the segmentation error. The correspondence
is used to adaptively filter temporally correlated segmen-
tations. Preliminary results show improved performance
when compared to fixed gains.

Index Terms – Contour tracking, observers, contrast
parameter, shape metrics.

I. I NTRODUCTION

This paper considers the problem of achieving accu-
rate segmentation-based tracking in the face of imaging
noise. Obtaining noise models is an essential step in
understanding how to deal with such issues. For image
segmentation needs, noise models lead to analytical
methods for optimizing segmentation strategies [9], [10].

Alternatively, algorithmic improvements may be pro-
posed. There are a few main classes of such mod-
ifications. One involves improving the mathematical
model and the discrimination energies associated with
the segmentation process. The second involves imposing
shape constraints on the target model [8]. These classes
of improvements have been shown to also improve
associated segmentation-based tracking algorithms [2].
A third class, uniquely suited to video, is to introduce
filtering schemes [3].

The spatio-temporal correlation between video frames
should provide sufficient information to remedy poor
segmentations arising from imaging noise that cannot
be handled by optimizing the individual segmentations.
This paper provides an analysis of noise on the seg-
mentation procedure and determines its effects utilizing
curve comparison metrics [11], [14]. With the expected
error rates, it is possible to demand a corrective gain
for handling the expected segmentation error arising
from imaging noise. In order to properly incorporate the

expected error into the filtering procedure, the functional
relationship between the image data and the segmenta-
tion quality must be ascertained.

The principal contributions of the work include:a
methodology for utilizing a proven contrast parameter to
derive expected segmentation errors that are geometri-
cally relevant, an empirical procedure for identifying the
optimal filter gain given the measured contrast, and the
use of the optimal gain for probabilistic shape filtering.

Organization:Section 2 covers the contrast parameter,
the shape metrics, and the characterization procedure.
The filtering strategy and its relation to the error esti-
mates are discussed in Section 3. A proposed adaptive
shape filter is tested and compared against ground truth.
Section 4 concludes the paper.

II. QUANTIFICATION OF SEGMENTATION ERROR

THROUGH A CONTRAST PARAMETER

Suppose that the target is a single connected object in
the image to process. LetPin andPout be the intensity
probability distribution functions (pdfs) of pixels inside
and outside the object, respectively. Local to the object,
an algorithm’s ability to segment is directly related to the
interior and exterior pdfs. Segmentation ability is related
to how distinct the distributionsPin and Pout are (see
Figure 1). When there is significant overlap between the
target and background distributions, the segmentation is
prone to errors. Conversely, when the distributions are
distinct, the segmentation is reliable.

1) Distance between pdf’s:The Bhattacharyya coef-
ficient between two distributionsp andq is defined as

β(p, q) =

∫

√

Pin(x) · Pout(x) dx.

It is a similarity measure between pdf’s that varies in the
range[0 , 1]. High values ofβ indicate overlapping pdf’s
(and suspect segmentations), while low values indicate
distinct pdf’s (and reliable segmentations).

2) Distances between curves:Several metrics [1] ex-
ist to quantify the result of a segmentation given ground
truth. While [10] utilizes the number of missclassified
pixels, this work utilizes curve metrics. The Sobolev
distance [11] is a shape metric for curves implicitly



defined by a signed distance function; it computes point-
wise errors between the two curves’ signed distances.
The Sobolev distance provides a local measure of curve
mismatch. The Laplace distance [14] is a metric on
the space of curves that locally provides the distance
between curves, by computing the length of unique
correspondence trajectories between the two curves.

3) Segmentation error vs contrast parameter:Here,
we study the influence of noise on the segmentation
process and use the Bhattacharyya distance in order
to predict the segmentation error. Each sensor and vi-
sual tracking application will have different noise level
characteristics and tolerances. The process presented
here should be viewed as an important calibration step
to perform before using a segmentation algorithm for
tracking: it characterizes the nominal performance and
response to imaging noise. The empirical uncertainty
calibration is described in what follows, where we use
Bayesian segmentation [4], [5] on the image data.

Protocol: First, begin with a collection of shapes that
will form the ground truth (preferably from an existing
video sequence). Select the interior and exterior distri-
butions to be Gaussian,Pin,out = N (·; µin,out; σin,out).
with µin/µout andσin/σout the interior/exterior Gaus-
sian parameters. Add zero mean Gaussian noise with
standard deviationσnoise > 0 to the images. For each
choice of σnoise, generate a set of corrupted images.
Perform segmentation to yield curves partitioning the
images into target and background regions. Determine
the contrast coefficient, as given by the Bhattacharya
distance between the interior and exterior distributions of
pixel intensities, using ground truth. Compute the curve
estimation error using the Sobolev and Laplace shape
metrics. With these measurements, derive the expected
segmentation error as a function of the Bhattacharyya
distance.

Experiment: We used a collection of 36 different
shapes both artificially generated, and hand-segmented
from real images. The collection of shapes considered
included circles of different radii, walking people, and
fishes. For each noise level,σnoise, 180 realizations
of noisy images were generated. Figure 2 depicts the
experimental curves giving the segmentation error as
a function of the contrast parameter. The mean curve
is given by the thick line curve, and serves as a
first approximation to the segmentation error given the
Bhattacharyya coefficient. Using the fit, the Bhattachrya
measure will map to the expected segmentation error.

When the target and background are clearly separable
(β < 0.4), the error dependence onβ is independent
of shape. Due to the clear separation, the segmentations
have low error. A Bhattacharyya coefficient between0.4
and0.7 represents the transition region from moderate to
poor separation of target and background. In this range,
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Fig. 1. Image samples and corresponding taget/background distribu-
tions. The left column represents a scenario where the pdf’sare clearly
separated (β = 0.12). The right column represents a scenario where
the pdf’s overlap significantly (β = 0.75). The true pdf’s are given
by thick lines while Gaussian-fitted pdf’s are shown with finelines.
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Fig. 2. Segmentation error as a function of the Bhattacharyya
coefficient between the target and background distributions

the spread between the curves is larger. Still, the mean
curve provides a consistent measure of the expected
segmentation error given the Bhattacharya measure. The
wider spread is due to an increased dependency on the
shape. For sufficiently low noise levels, the segmentation
error is fairly independent of target shape. For significant
noise levels, the segmentation algorithm performance
also depends on the local curvature of the shape (be it
high or low). Such behavior is expected given that many
segmentation methods utilize curve smoothing priors
during the optimization process. The error spread for
high β values reflects the dependence of the error on
the local shape curvature and the influence of the curve
smoothing terms in the segmentation algorithm. Above
a certain noise level (β > 0.7), target and background
are no longer separable; the segmentation results are
meaningless (the smoothing terms dominate).

III. A N ADAPTIVE PROBABILISTIC FILTER

This section describes the probabilistic filtering strat-
egy used to spatio-temporally constrain the individual



segmentations from a video sequence. Essential to many
filtering strategies is a gain factor that modulates the
influence of the measurement versus the prediction [12].
The error characterization process described above as-
sessed the measurement uncertainty asociated to imaging
noise. A mapping of the measurement uncertainty to the
optimal gain is now sought. In what follows, we describe
the probabilistic filtering strategy and the empirical
evaluation of the optimal gain. It is a modification of
the deformotion filter [7], and is described further in
[13].

4) Filtering Strategy:The visual track filter operates
via interlaced prediction and correction steps. The filter
decomposes the tracking procedure into two compo-
nents: a rigid state (pose) and a non-rigid state (shape).
The pose consists of translation,g and translational
velocity, ξ, in R

2. The shape state implicitly represents
the curve by a probability field,P . The probability field
implicitly defines the shape curve by the50% probability
contour. The shape velocity is a vector field onR

2, Θ.
The prediction step evolves the observer state using a

constant velocity model:

ġ = ξ, ξ̇ = 0,

Ṗ = ∇P · Θ, Θ̇ = 0,

to generate the predicted states(g−, ξ−, P−, Θ−).
Given a segmentation of the current image, the mea-

surement for the current image is generated as follows.
Align the predicted shape with the segmented shape,
which will provide the translational component,gm, of
the measured shape. The segmentation, after registration
and possibly also conversion to implicit density form,
provides the shape measurement,Pm. If desired, mea-
surement of the shape velocities,Θm, may be obtained
through the use of optical flow [6] between the current
and previous images.

Once the measurement is complete, a correction
procedure is applied to generate the current estimate
of the track signal, with decoupled pose and shape
corrections. The pose correction is performed using a
Kalman filter update on the combined pose and pose
velocity (g, ξ) sub-state. The shape correction is done
using a geometric filtering strategy on the probability
field and its complement,Q,

P+ = (P−)
1−K

· (Pm)
K

Q+ = (1 − P−)
1−K

· (1 − Pm)K ,

after which P+ and Q+ are re-normalized, but only
P+ is kept. The parameterK varies in the range[0, 1];
lower values favor prediction and higher values favor
measurement.

Correction on the velocity field is given by

Θ+ = Θ− + Kvx ·Xerr(Pm, P−) + Kvv · (Θm −Θ−).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bhattacharyya Coefficient between inside/outside distributions

O
pt

im
al

 G
ai

n 
fo

r 
th

e 
sh

ap
e 

co
rr

ec
tio

n

 

 
Sobolev
Laplace

Fig. 3. Optimal gain as a function of the Bhattacharyya coefficient.

One way to generate the error vector field between prob-
ability fields Xerr(Pm, P−) is to compute the optical
flow between the measured and predicted shapes. The
parametersKvx and Kvv vary in [0, 1]. If the shape
velocities are not measured, thenKvv = 0.

Due to the nonlinear nature of shape, there may be
a nonlinear relationship between the expected segmen-
tation error (via Sobolev of Laplace metrics) and the
optimal shape correction gain,K, during tracking. A
second experiment was performed to identify the rela-
tionship between the Bhattacharya coefficient and the
optimal gain. Because the gainsKvx and Kvv operate
in a vector space, we do not optimize them.

Protocol:Take video sequences with ground truth and
inject a known amount of noise,σnoise into the se-
quences similar to before. For gain valuesK in the range
[0, 1], perform the experiment at each realization of the
noise level (with fixedKvx andKvv). Quantify, via the
Sobolev or Laplace metrics, the tracking performance of
the filter at the different gain levels. Collect the results
together to obtain the optimal gain as a function of the
Bhattacharya measure.

Experiment:The protocol was followed for a single
image sequence. There were 240 different configurations
for the inside/outside distributions, and the gain sweep
went in increments of0.05. The resulting functional
dependence is given in Figure 3. The optimal gain for
the Sobolev metric gives an almost linear dependence for
aboutβ > 0.15. The optimal gain for the Laplace met-
ric has slight nonlinear dependence, but approximately
follows the trend of the Sobolev metric optimal gain.

IV. EXPERIMENTS AND RESULTS.

For the experiments, we used a synthetically corrupted
infrared sequence from OTCBVS and a naturally noisy
aquarium sequence. The sequences were tracked with
constant filter gains. Then we used the Bhattacharyya
distance to adjust the gain. Because it is unrealistic
to assume ground truth is available, we computed the
Bhattacharyya distance with the interior/exterior distri-



butions generated by the segmentations. Performance
evaluation used the Laplace metric in conjunction with
hand-segmentations (ground truth) of the sequences.

Figure 4 shows the results obtained on the infrared
sequences for different noise levels. The adaptive gain
has good overall performance compared to fixed gains.
For naturally noisy sequences with variable noise levels
as in the aquarium sequence (frames10 and60 depicted
in Figure 1), the Bhattacharyya coefficient proves to be
efficient at triggering shape correction when necessary
and assessing the extent to which such correction needs
to be performed. Figure 5 shows the Laplace error
as a function of time. The adaptive filter tracks well
throughout.

V. CONCLUSION

This paper presented a procedure to characterize the
behavior of segmentation algorithms in the presence
of noise. The Bhattacharyya coefficient between target
and background distributions proved to be useful for
assessing segmentation error. Experiments on noisy se-
quences verified the ability of the Bhattacharyya distance
to assess imaging noise for adaptive shape filtering.
Future work seeks to perform the same analysis for color
images.
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Fig. 4. For one level of noise corruption, image sample and
segmentations obtained at given times for different valuesof the
gain. For five levels of noise corruption, the average Laplace errors
throughout the sequences are displayed.
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Fig. 5. Noisy aquarium sequence.


