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Abstract— This paper applies estimation theory to the
problem of tracking deformable moving objects in an image
sequence. We extend previous work to derive a sub-optimal
second-order curve filtering strategy. The second-order model
accounts naturally for the curve velocities, resulting in better
curve predictions. The second-order curve dynamics are non-
linear, so an extended Kalman filtering approach is utilized to
estimate the position and deformations of a curve as it evolves
in the plane. Application to visual tracking is emphasized

through experiments utilizing recorded imagery and providing
objective comparisons to other tracking methods.

I. INTRODUCTION

This paper considers the problem of recursively tracking

deformable moving objects in an image sequence. Due to

image clutter, poor resolution, imaging noise, compression

artifacts, or imperfect segmentation models, performing a

series of static detections on individual frames extracted

from the image sequence results in poor resilience to

perturbations. Consequently, information gathered from past

detections has been introduced in a variety of manners

to increase robustness. Related literature includes methods

exploiting temporal consistency of the target [11], methods

processing volumetrically the image sequence with batch

techniques [13], and methods introducing strong shape

priors into the detection [2], [17].

It is common to view the contour tracking problem as

an estimation problem [18] given uncertain measurements.

The introduction of a Markovian assumption simplifies it

to one of recursive estimation, for which many solutions

involve the use of estimators. The references [1], [3],

[4], [7], [9], [12], [19], [20], [21], [22] discuss various

filter and estimation strategies for tracking of deformable

objects. Given the complications arising from the infinite-

dimensional nature of the space of smooth, closed planar

curves, many approaches propose estimator designs requir-

ing manual gain selection. Fixed high gains are typically

used to conform the state estimates to the measurements

when the image sequence is believed to have a high

signal-to-noise ratio. Under severe perturbations, fixed low

gains are adopted to moderate the injection of measure-

ments into the state estimate. Particle filters do not require

gain selection, however the probability distribution of the

evolving state needs to be estimated and propagated at

each time-step. For visual tracking applications, this need

to maintain a density estimate in the infinite-dimensional

shape space introduces a substantial computational burden

[15], [20]. Low dimensional parametrized approximations

of the shape space are then often used to minimize the

number of particles used [3]. In [8], we presented a local,

optimal curve filtering strategy. The main contribution of

the work consisted in developing a framework in which the

optimal gain associated to the curve filtering process could

be derived, given knowledge of quantitative uncertainty

levels on the image sequence. However, the optimality was

only valid for the curve position. Curve velocity estimation

required selection of a constant gain.

Contribution: This paper extends the work in [8]. Here,

we present a second-order extended Kalman curve filtering

strategy. The nonlinearity of the second-order curve dy-

namics prevents the derivation of a linear Kalman curve

filtering strategy. The second-order model accounts natu-

rally for the curve velocities and couples the update of the

curve’s position and velocity, which results in better curve

estimates. The curve filtering is then utilized in conjunction

with standard filtering strategies on the (object) pose to

estimate the position, shape, and local shape deformations

of a deformable moving object in an image sequence.

Optimality is examined in the sense of a quadratic Laplacian

error [14] between the curve estimate and the true curve.

Outline: The paper is organized as follows. Section II

presents the state space model and the family of transverse

curve coordinates used to form the collection of coordinate

frames within which curve operations are linear. Section

III describes the local second-order curve filtering strat-

egy. Section IV discusses the experimental setup and the

corresponding results. The conclusion and further research

directions are discussed in Section V.

II. STATE-SPACE REPRESENTATION

This section describes the state-space model used in the

curve and pose estimation.

A. Pose-shape decomposition

Under deformotion [23], a deformable moving object in

a video sequence can be described by a group motion and



a shape deformation. Local shape deformations serve to

describe the non-rigid curve motion. Naturally then, the

state description will include a rigid group component and

a shape component. The second-order shape description

consists of the planar curve C : S1 → R
2, and its normal

velocity β : S1 → R, where S1 denotes the circle. The

circle will be described by a non-empty connected subset

of R that describes the curve parameter (e.g. S1 = [0, 1] for

the arclength parameter s), with the end-points identified to

be equal. In what follows, the curve will also be described

implicitly by a signed-distance level-set function Ψ : R
2 →

R where C = Ψ−1(0). When this is the case, the normal

velocity will be extended over the level-set domain to define

β̄ : R
2 → R such that β̄ ◦ C = β. For more details on this

setup, see [10]. The group motion represents the pose and

the pose velocities of the object in a reference coordinate

frame; here it is denoted g and ξ, respectively, and will be

the special Euclidean group SE(2), or its subgroup E(2),
and its Lie algebra. Since the group variable and the Lie

algebra live in a finite-dimensional space, standard filtering

strategies [5], [6], [18] on finite-dimensional spaces can be

applied to the pose and its velocity. This work focuses on

the curve filtering process.

B. Curve representation and point notation

The curve C is implicitly described as the zero level set of

a higher-dimensional signed distance function Ψ : D → R,

where C = {x ∈ D | Ψ(x) = 0} and D ⊂ R
2 is a compact

domain of the plane. The remainder of this subsection

briefly describes a local, linear description for planar curve

variation and curve uncertainty. It consists of a family of

non-intersecting trajectories transverse to the curve C. The

construction of the family of transverse curves defines a

coordinate system transvese to the curve.

Given two smooth curves C0 and C1, a characteristic error

vector field Xchar is obtained by solving a series of Laplace

and Poisson equations over the domain, with boundary

conditions defined on the curves and domain boundary [8].

The error vector field computed this way exhibits some

beneficial properties. In particular, its characteristic curves

are non-intersecting, they approach the curves C0 and C1

from normal directions, and their speed never vanishes. For

a particle x0 ∈ C, its traveling distance, d, at position x

along the characteristic of Xchar through x0 is defined as

the arc-length of the characteristic curve connecting x0 and

x. Measuring these traveling distances from a complete set

of initial locations is obtained by solving

{

d(·, 0) = 0,

dτ +XT
char ∇xd = 1,

(1)

where τ is an artificial time parameter for the PDE equation

and d : R
2 × R

+ → R. Figure 1-(a) shows an example of

the transverse curves and the distance map obtained.

(a) Distance map and transverse curves.

(b) Transverse coordinates.

Fig. 1. The topology and geometry of curve comparison and transverse
curve coordinates.

For the curve C local to C0 and C1, the traveling distance

map and its characteristics define a 1D family of transverse

coordinate frames. Let s be the arc-length parameter of the

curves in question, and assume that C0(0), C1(0) and C(0)
lie on the same characteristic. Then at C(s) the associated

transverse curve intersects, for example, the curves C0 and

C1, at the same arc-length parameter s. The coordinate

location on the transverse curve of the curve point C0(s)
is given by

sd(C0(s); C(s)) = d(C0(s), 0), with C = d(·, 0)−1,

where sd(p; C) describes the signed traveling distance from

a point x to its corresponding point on C. The distance is

negative when x lies interior to C and positive exterior to

C. Figure 1-(b) depicts the coordinate system along one of

the transverse curves (where C is in red).

C. State-space

The goal of the filtering process is to arrive at esti-

mates of the curve and its normal velocity, denoted by

Ĉ and β̂, respectively. To explicitly exploit the fact that

these transverse curves have their own coordinates, we will

specify the coordinates on the transverse line of a particular

curve point Ĉ(s) by x(s), whose value is given by x(s) =
sd(Ĉ(s); C(s)), where C(s) is presumed to be the true curve

state. Likewise, the normal velocity of the curve will be

given by v(s). This notation is called the point notation for

a curve. The point notation will be used to define linear

operations on curves that are locally close, and to define

curve variances. For simplicity, let x(s) = [x(s), v(s)]T .

The state x(·) locally defines the second-order curve state.

III. SECOND-ORDER CURVE FILTERING

This section describes a second-order filtering method

for the space of simple, closed planar curves. We discuss a



local, sub-optimal observer whose internal state is used to

estimate the state of a moving object in an image sequence.

The curve evolution equations are continuous, while the

curve and covariance updates and corrections are discrete.

In addition to the curve state, the filter state is composed

of the curve covariance matrix P : S1 → R
2×2, which is a

measure of the curve uncertainty transverse to the curve and

the normal curve velocity uncertainty. Due to the infinite-

dimensional nature of curve geometry, some technical care

is necessary to ensure that the evolving system preserves

smoothness of the curve: we retain the filtering assumptions

made in [8]. In particular, it is expected that all curves are

aligned or have been registered prior to filtering. The curve

estimate error is such that local curve metrics sufficiently

quantify the error. Further, the measurement error covari-

ance R : S1 → R
2×2, and the initial curve uncertainty

P are presumed to vary smoothly along the curve. Since

the curve filtering process is reduced to filterings of curve

particles along the single-dimensional transverse curves,

these smoothness and locality assumptions guarantee that

the estimated state can be smoothly reconstructed.

A. Dynamical Prediction Model

The dynamical prediction model produces an estimate of

the filter state at a future time from past estimates. Usually,

it relies on prior knowledge about the state evolution

resulting in phenomenological motion models. Here, the

prediction model does not assume such priors. Rather a

general purpose second-order model is used [12]. It is

Ĉt = βN ,

β̂t =

(

1

2
β̂2 +

a

µ

)

κ,
(2)

where N is the curve normal, a is a regularization constant,

κ is the curvature and µ is the mass density constant for

the curve. In the implicit signed-distance level-set represen-

tation, the equivalent curve dynamics are given by
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 ,
(3)

which relies on the facts that Ψ is a signed-distance function

and that ∇Ψ ⊥ ∇ ˆ̄β (since β̄ is β extended along the normal

characteristics of the curve).

In addition to the curve states, the curve covariances

must be propagated. Given that the evolution equations are

nonlinear in nature, a linear discrete approximation to the

covariance update is needed. The approximation is derived

directly from the linearization of Equation (2). Here, the

first-order approximation is

P(s, t+ ∆t) = F · P(s, t) · FT + Q · ∆t2,

where F, as obtained from (2), is

F =

[

1 ∆t
0 1 + βκ ∆t

]

and Q =

[

0 0
0 σβ

]

,

where Q is the process noise covariance, Q : S1 → R
2×2,

due to uncertainty in the curve acceleration. The curve

covariance is updated discretely with the curve. Further-

more, the update occurs for the extended covariance matrix

P̄ : D → R
2×2, which is the covariance matrix P extended

to the entire level-set domain. After each time-step, the

covariance is extended, much like the normal velocity (see

[10] for details on evolving extended quantities).

The final predicted state will be denoted by C−, β−,

and P−. In the implicit representation with extended fiber

elements, the prediction consists of Ψ−, β̄−, and P̄−.

B. Measurement Model

The curve position measurement Cm for the current frame

is obtained from any foreground/background segmentation

algorithm applied to the current image, so long as the final

result is a level-set function Ψm. To ensure proper alignment

of the curves, either a localization procedure should be

applied before segmentation or a registration method after

segmentation.

Measurements for the curve velocities are obtained by

computing the optical flow (u,w)T between two consecu-

tive (aligned) images and projecting it onto the unit normals

of Ψm:

β̄m =

(

u

w

)

·
∇Ψm

||∇Ψm||
.

Note that this measurement is defined over the entire image.

The measured velocities, βm, will be the normal velocities

obtained by evaluation of β̂m on the zero level-set, βm =
β̄m ◦ (Ψm)

−1
(0).

Once the measurements are available, they need to be

converted into the tranverse coordinate system obtained

from the prediction and the measurement curves. The

procedure, as delineated in §II-B, involves the construction

of the characteristic error vector field Xchar arising from

the curves Ψ̂− and Ψm. The zero coordinate refers to the

predicted curve C−, thereby yielding the local distance to

the measurements xm, and the normal velocity vm.

C. Update Model

The role of the update model is to refine the prediction

once state measurements become available. Here, for each

particle along its corresponding single-dimensional trans-

verse curve, an update is performed on the state prediction.

Given the setup, along one of these transverse curves, the

estimation problem faced is one of linear filtering for which

an optimal solution is described by the Kalman filter [6],

[18]. Following the previous work [8], define the curve

error, the predicted curve error, and the measurement curve

error by

ê(s) = x̂(s) − x(s),

ê
−(s) = x̂

−(s) − x(s), and

e
m(s) = x

m(s) − x(s),



and curve covariances

P(s) = E
(

ê(s)êT (s)
)

> 0,

P−(s) = E
(

e
m(s) (em(s))

T
)

> 0,

and Pm = R > 0 where R is the measurement error co-

variance (smoothly varying along the curve). It is assumed

that the measurements and predictions are independent,

Cov(x−,xm) = 0.

The optimal correction gain associated to these errors and

covariances under the update law, given in point represen-

tation,

x
+(s) = x

− + K(xm − x
−), (4)

is K = P− (P− + R)
−1

. In the remainder of the paper, the

gain matrix K is decomposed as:

K =

[

Kxx Kxv

Kvx Kvv

]

.

The following discussion sketches the implementation of

the update equations for the implicit representation of the

curve and its fiber (velocity plus covariance).

1) Curve position correction: In point notation, the up-

date law of the curve position is obtained from Equation (4),

x̂+ = x̂− +Kxx ·
(

xm − x̂−
)

+Kxv ·
(

vm − v̂−
)

. (5)

The curve defined by x̂+(s) becomes the posterior curve

estimate.

2) Curve velocity correction: The velocity component is

updated according to

v̂+ = v̂− +Kvx ·
(

xm − x̂−
)

+Kvv ·
(

vm − v̂−
)

. (6)

3) Covariance update.: The covariance update is

P+ = (1−K) P−. (7)

The position and velocity updates are separated above

because each must be dealt with separately. The curve

update follows naturally from Equation (4), however the

velocity and covariance need a special procedure. To per-

form the updates, predicted and measured curve velocities

and covariances need to be transported to the updated

curve location where they can be compared. Considering

the velocity case only, transport is done by solving the

advection equations:
{

φτ +XT
char · ∇φ = 0

ψτ +XT
char · ∇ψ = 0

(8)

with φ(·; τ = 0) = vm, ψ(·; τ = 0) = v̂−, and τ an

artificial time parameter. A similar procedure is applied

to the covariance matrix. By extending the velocity and

covariance along the characteristics and performing the

update over the domain, the update is performed for the

implicit representation. Such an approach facilitates recon-

struction of the updated curve, its normal velocity, and

its covariance after which the curve is re-initialized to be

a signed-distance function while the normal velocity and

covariance are extended along the normal characteristics.

IV. EXPERIMENTS AND RESULTS

The following experiments are described in order to

validate the filter design and resulting performance. Since

the second-order model is primarily motivated by the need

to better estimate curve’s deformations, we chose three test

sequences presenting large and fast changes in shape. The

first sequence of images comes from a construction database

and the remaining two come from an aquarium database. In

addition to the fast shape variations, poor resolution, clutter

and non-stationary camera make the tracking task difficult.

In all cases, the mass density was set to µ = 1 and the

curve regularization was set to a = 1.

As for the test algorithms, base measurements are ob-

tained by applying an active contour tracking technique [16]

to the test sequences. Subsequently, the deformotion filter-

ing technique [4] and our sub-optimal second-order filter

are applied to the measurements. For comparison purposes,

we manually segmented the construction sequence and 100

frames from each aquarium sequence to yield the ground

truth. In the figures, the tracking techniques are labelled as

Ground Truth, AC Measurements, Deformotion Filter and

AC Filter.

In order to provide objective comparison, the number

of misclassified pixels (NMP) is used as a quantitative

error metric. It represents a measure of fidelity to the true

curve being estimated. Additionally, a smoothness index

is employed. At each frame, it consists of a dissimilarity

measure between the shapes at said frame and previous

frame. Hence, this metric provides a measure of the tem-

poral consistency of the target and indicates how fast the

shape variations are.

In the first experiment, the aim is to track a construction

worker. Active contour measurements spike when other

workers presenting similar color distributions approach the

target. Our second-order filter is able to attenuate these

perturbations when they occur but also capture the correct

shape when facing moderate to low segmentation noise.

Comparatively, the deformotion filter eliminates the pertur-

bations but tends to oversmooth. Figure 2 depicts sample

estimates obtained with the different tracking techniques as

well as the estimation error and the smoothness indices.

The second experiment targets a fish in an aquarium. The

movement and shape deformations of the target are dramati-

cally fast in this test sequence. Moreover, the color distribu-

tions of the target and elements of the background overlap

significantly. This results in deteriorating performance for

the active contour measurements. Both the deformotion

filter and the local second-order filter drastically attenuate

the perturbations and maintain temporal consistency of the

target’s shape (see Figure 3).

Figure 4 depicts sample estimates and the results corre-

sponding to the third experiment. Here, a fish is quickly

deforming with fast movements of the caudal fin. A small

overlap between target and background color distributions

results in acceptable active contour measurements with



(a) Sample Frame (sequence 1)
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(b) NMP error vs. time
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(c) Smoothness index
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(g) Proposed second-order filter

Fig. 2. Quantitative comparison of performance for Sequence 1. The top row depicts a sample frame, the number of misclassified pixels and a
smoothness index capturing the temporal consistency of the target. Sample estimates are also displayed for each tracking technique.

small local perturbations and some jittering on a frame-

to-frame basis. Due to the shape variations, application of

the deformotion filter smoothes out the shape perturba-

tions but introduces a lag between estimates and the true

shapes. The local second-order filter is able to eliminate

those perturbations while adapting much faster to the shape

variations thanks to the second-order model involving the

curve velocities.

These experiments indicate that the sub-optimal second-

order filter is capable of attenuating curve perturbations

and maintaining a good fidelity to the true curve being

estimated. While temporal consistency of the shape is

obtained, it is not achieved with detrimental oversmoothing

at the expense of curve fidelity.

V. CONCLUSION

This paper presented the design of a local sub-optimal

second-order curve filtering strategy. Following up on pre-

vious work, we extend the filter’s state to include both

the curve’s position and velocity. The resulting second-

order model accounts more accurately for curve velocities,

which results in better curve estimates. The filter design

is validated by applying the technique to recorded im-

agery and comparing objectively its performance to other

tracking techniques using a quantitative error metric. These

experiments show that the technique presented here is well

suited to estimate the position and deformations of highly

deformable curves, especially in the face of noisy mea-

surements as induced by image disturbances. The difficulty

associated with the nonlinear dynamics indicate that second-

order optimal filtering for dynamic curves may be best

handled within the context of curve geodesics by improving

upon [19].
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(a) Sample Frame (sequence 3)

 6 57 62 88 92

Frame

(b) Ground truth

 6 57 62 88 92

Frame

(c) Active contour measurements

 6 57 62 88 92

Frame

(d) Deformotion filter with manually-tuned gain

 6 57 62 88 92

Frame

(e) Proposed second-order filter

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

600

700

800

900

1000

 

 

AC Measurements

Deformotion Filter

AC Filter

(f) NMP error vs. time
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Fig. 4. Quantitative comparison of performance for Sequence 3. Sample estimates are displayed for each tracking technique, along with the number
of misclassified pixels and a smoothness index capturing the temporal consistency of the target.


