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Gain selection: currently, most filtering designs proposed for tracking
consider a fixed gain, manually specified.
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Abstract

This work examines the task of closed curve filtering for
segmentation-based visual tracking.

We discuss the derivation of a local, linear description for planar curve
variation and curve uncertainty. Subsequently, a simple, locally
optimal filtering procedure is derived.

The principal contribution is the derivation of a mechanism for
estimating the optimal gain associated to the curve filtering process
for planar curves, given quantitative uncertainty levels.

Experiments were conducted to validate the proposed method and
resulting observer design.
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Transverse curve coordinates

Correspondence trajectories:

Solve the Laplace equation ∆u = 0 (with
boundary conditions) to obtain a harmonic
field. The corresponding characteristic vector
field is given by ∇u

||∇u|| .

Curve coordinate system:

Following the distance characteristics starting
at a curve point defines the local transverse
coordinate system.
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Curve filtering and the optimal gain

Consider estimates Ĉ, Ĉ− of the true curve C and a measurement Cm.

Assume the measurement is independent from the prediction, i.e.
Cov(Cm, Ĉ−) = 0.

In point notation, the curve errors of the estimates are given by:

{

ê−(s) = x̂−(s) − x(s)

ê(s) = x̂(s) − x(s)

The variance associated with the errors is:







P−(s) = E
(

[x̂−(s) − x(s)]
2
)

> 0

P(s) = E
(

[x̂(s) − x(s)]2
)

> 0
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Curve filtering and the optimal gain (2)

Further assume the measurement error variance (R(s) > 0) varies
smoothly with s.

We seek an optimal selection of the gain K so that the error
covariance P(s) is minimized under the update model:

x̂(s) = x̂−(s) + K (x̂m(s) − x̂−(s))

The setup reduces the problem of finding the optimal selection of K

to a one-dimensional problem, for which the optimal choice of K is
given by the Kalman gain:

K = P− (P− + R)−1

The associated error variance is:

P = P− (1 − K )
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Extension to visual tracking

The filtering strategy is now applied to visual tracking.

The target motion is decomposed under a rigid motion component
(group) and a non-rigid motion component (shape).

The combination of the shape filtering strategy with a group filtering
strategy and a dynamical model results in an observer for visual
tracking. ������� �������	��
��� �
������

mx

x −

x̂
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Dynamical prediction model

The dynamical prediction model describes the state evolution based on
prior knowledge of the target movement.

For the group variable, one can assume a constant velocity model:

ġ = ξ, ξ̇ = 0

For the contour, multiple prediction strategies can be considered:

constant curve deformation:

Ψ̇ = ∇Ψ · Θ Θ̇ = ∇Θ · Θ

dynamic elastic prior:

Ct = βN , βt = 1
2β2κ
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Measurement model

Measurement of the target can be achieved through any segmentation
algorithm applied to the current image.

A registration procedure can be applied in order to decompose the
resulting segmentation into a measurements for the group and a
measurement for the curve.

The velocity field can be measured by computing the optical flow
between two subsequent aligned images and projecting it onto the
measured curve normals.
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Update model

The update model refines the estimate of the observer internal state given
state measurements:

Correction on the group variable can be carried out using finite
dimensional filtering update laws (Kalman, EKF or UKF updates).

Correction on the shape component requires performing:

x̂(s) = x̂−(s) + K (xm(s) − x̂−(s)) = Kxm(s)

Correction on the shape velocities is done through:

β̂(s) = β̂− + Kvx(x
m(s) − x̂−(s)) + Kvv(β

m(s) − β̂−(s))
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Experiments: gain optimality

Segmentations on a static sequence of images corrupted with noise
were generated and then filtered using the proposed local filter.

A modified version of the filter was also used with a fixed gain
strategy. A gain sweep from 0.05 to 0.95 in 0.05 gain increments was
performed to verify if the Kalman gain converged to its optimal value.
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Experiments: comparison to an actual 1D system

Several 1D Kalman filter simulations were run to compare the filter
simulations against a true 1D system. Here, we depict the evolution
of the error for a 1D system and for a simulated static tracking
scenario (no group motion, no curve deformation).
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Experiments: Visual tracking

  6  35 102
Frame

(a) Active Contour
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(b) Shape-constrained
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(c) Deformotion Filter
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(d) Local Kalman
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Experiments: Visual tracking
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Experiments: Visual tracking (2)
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Experiments: Visual tracking (2)
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Experiments: quantitative metrics

Metric \ Algorithm AC Deformotion Shape Observer 

Trackpt error           (L2/L� ) 2.2/ 6.6 2.2 / 9.6 7.6 / 18.5 1.8 / 6.2 

NMP                     (avg/max) 78 / 202 72 / 172 87 / 160 63 / 111 

Mean Laplace       (avg/max) 1.0 / 3.7 0.9 / 3.1 1.2 / 2.6 0.7 / 1.3 

Max Laplace         (avg/max) 2.9 / 8.9 2.3 / 7.9 3.4 / 8.4 2.0 / 3.5 

# Frames tracked 109 109 115 350 

Metric \ Algorithm AC Deformotion Shape Observer 

Trackpt error           (L2/L� ) 4.4/ 9.4 4.3 / 9.3 3.3 / 9.7 2.3 / 5.5 

NMP                     (avg/max) 52 / 149 49 / 125 98 / 195 48 / 95 

Mean Laplace       (avg/max) 1.2 / 14.9 1.1 / 18.4 2.7 / 8.4 0.8 / 2.4 

Max Laplace         (avg/max) 3.0 / 18.3 2.7 / 21.5 8.6 / 18.9 2.3 / 6.4 

# Frames tracked 1014 1014 430 1014 
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Thank you for your attention.

Questions?
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