
Multivariate Analysis of Imaging Mass Spectrometry Data 
 
 

E. R. Muir1,*, I. J. Ndiour2,*, N. A. Le Goasduff2,*, R. A. Moffitt1, Y. Liu3,  
M.C. Sullards3,4, A.H. Merrill, JR.3, Y. Chen4,#, and M. D. Wang1,2,# 

1Department of Biomedical Engineering, 2Department of Electrical and Computer Engineering,  
3School of Biology, 4Department of Chemistry  & Biochemistry. Georgia Institute of 

Technology1,2,3,4 and Emory University1, Atlanta, GA. *denotes equal contribution. #To whom 
correspondence should be addressed. 

 
 

Abstract 
 

Imaging mass spectrometry can be used to reveal 
spatial distributions of multiple molecular species in a 
2D biological sample. Because of the large amount of  
data produced by this technology, it is difficult and 
time-consuming to manually extract meaningful results 
from imaging mass spectrometry experimentation. We 
have developed and implemented an original approach 
to easily and consistently process mass spectrometry 
imaging data with the goal of automatically identifying 
interesting regions of molecule expression. Based on 
multivariate analysis techniques such as principal 
component analysis, the system allows researchers to 
conveniently define and visualize spatial regions based 
on spectral similarity. Features of our system are 
demonstrated on mouse cerebellum data. 
 
 
1. Introduction 
 

Recent improvements in imaging mass 
spectrometry (IMS) are due in a large part to the 
introduction of matrix-assisted laser desorption 
ionization (MALDI) [1]. MALDI mass spectrometry 
analysis can be applied to biological tissues to produce 
ion density maps, or molecular images, of the sample 
surface. In this way, MALDI-IMS) reveals the 
expression levels and spatial distributions of known 
and unknown molecules in complex tissues, permitting 
sensitive, rapid and molecularly specific analyses of 
biomolecules in 2D tissue sections. MALDI-IMS has 
been recognized as a promising tool for numerous 
applications including biomarker discovery, drug bio-
distribution monitoring, and molecular mechanism 
investigation, as well as many other types of peptide, 
lipid, or metabolite analysis [2]. 

Computation of IMS data allows the construction 
of ion density maps for each signal detected by the 
MALDI device. Ultimately, thousands of molecular 

images, with thousands of pixels, may be obtained for 
each specific mass to charge ratio (m/z).  

One of the most popular software used to study 
IMS data is BioMap. It allows the user to visualize the 
data as thousands of ion images. However it does not 
provide any tools to facilitate data processing. The user 
must manually select the ion images and analyze them 
by eye to find the molecular distribution of specific 
ions. It usually takes much time for the user to analyze 
the data to obtain meaningful data. 

 Due to the high dimension of data created by 
mass spectrometry imaging, it is extremely difficult to 
manually distinguish between regions of interest in the 
image. Typically the data is analyzed by serial viewing 
of molecular images at individual m/z values using 
systems such as BioMap. Although there may be some 
spatial information at a single m/z value, it is nearly 
impossible to obtain an overview of the spatial 
distribution of every detected molecule from thousands 
of individual ion images. Therefore, an unsupervised 
data processing method for quickly observing masses 
of interest or spatial patterns in large collection of IMS 
data is urgently needed.  

The contribution of this paper is to provide 
methods to visualize IMS data and distinguish spatial 
regions and tissue types. Multivariate analysis is ideal 
for this task, and can be used to analyze the 
correlations within the entire imaging data set in order 
to provide valuable guides for the unveiling and 
understanding of related biochemical process. These 
methods are based on multivariate techniques such as 
principal components analysis (PCA), linear 
discriminant analysis (LDA), multivariate analysis of 
variance (MANOVA), and clustering.  

This paper is organized as follows. In section 2, 
we present the multivariate techniques. In section 3, 
we demonstrate the analysis of sulfatide in mouse 
brain tissue using multivariate techniques described in 
section 2. The results obtained by applying the 
methods proposed are presented in section 4. In section 
5, we discuss the results, and future work.    



2. Methodology 
 
This section is devoted to the rationale and 

methodology behind the system. 
 

2.1. Principal component analysis (PCA) 
 
Principal component analysis is a popular 

unsupervised multivariate analysis technique which 
may be used to perform data reduction on high 
dimensional data sets such as IMS. PCA has been 
previously used in IMS to help find patterns and to 
differentiate tissues [3-6]. Here, we use PCA in a dual 
role: 1) to identify MS peaks of interest; and 2) as a 
basis for further region clustering and classification 
analysis. The results obtained by applying PCA on 
experimental data are described in section 4.1. PCA, 
also called discrete Karhunen-Loeve transform (KLT) 
or the Hotelling transform, is a linear transformation 
that defines a new orthogonal basis in which the 
greatest variance of the data lies in the direction of the 
first (principal component) basis vector, the second 
greatest variance along the second basis vector, and so 
on. PCA relies implicitly on two assumptions: 1) that 
large variances have important dynamics; and 2) that 
data has a high SNR (signal-to-noise ratio). 
Fortunately, high SNR is a well-studied property of 
MS, and our results suggest that the first assumption is 
safe as well. Figure 1 illustrates the principle of 
principal component analysis in 2D.  

 

 
Figure 1. Principal component analysis. 

 
To perform PCA on multi-spectral images, such as 

those produced by MALDI-IMS, the data must first be 
ordered into a 2D array. In this case, the original data 
are a 3D array of size M X Y× × , where X and Y are 
the familiar spatial dimensions and M is the number of 
m/z values detected by the MS machine. This 
transformation is done by a simple reshaping of the 

M X Y× × data into an M N×  matrix, where 
N X Y= ⋅ . The purpose of this transformation is to 
achieve a form with N observations (pixels) of M 
variables (m/z peaks) for determining signatures (sets 
of molecules) which vary together strongly. 

For any data set of the form N observations of M 
variables, PCA can be completed using the classical 
covariance method: 

• Organize the data set in a matrix X  of size 
M N×  such that each column iX  represents 
an observation. 

• Compute the mean-subtracted data B  by 

subtracting the mean observation 
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from each column. 
• Estimate the covariance matrix 
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• Find the eigenvectors and eigenvalues of the 
covariance matrix. Since C  is a symmetric 
matrix, the eigenvectors are orthogonal and C  
can be diagonalized using a matrix V  of 
eigenvectors: 1V C V− ⋅ ⋅ = ∆ . The diagonal 
matrix ∆ consists of eigenvalues of C  
arranged in descending order.  

• Compute the cumulative energy content for 
each eigenvector: 
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• Select a subset of the eigenvectors as basis 
vectors. The first L columns of V are to form 
an M L× matrix denoted W . L can be 
determined using the cumulative energy e . 
This is typically done by choosing the smallest 
L such that the cumulative energy e  is above a 
desired threshold. 

• Compute the scores: 
BZ
S

=  (element wise 

division) using the matrix S of size M N×  
constructed such that all N columns are the 
same column, formed by squared roots of 
eigenvalues of C .  

• Project the original data set into the new 
coordinate system to obtain the reduced data 
Y :   TY W Z= ⋅  
The new data set is of size L N× .  

After PCA is applied on a data set, the reduced 
data obtained is of size L N×  and can be reshaped 



into a multi-spectral image of size L X Y× × . This 
operation has two benefits: 1) the basis vectors 
themselves can be used as a method of region and peak 
identification; and 2) the size and complexity of the 
data is reduced for future classification tasks such as 
clustering. 

 
2.2. Clustering 

 
Multivariate and clustering analysis are widely 

used in many branches of engineering and science, and 
have previously been used in mass spectrometry to 
automatically group and label pixels in the image with 
similar spectra [3]. This can be useful when very little 
prior information is known about the spatial 
characteristics of the mass spectrometry data.  

Here, a K-means clustering algorithm is applied 
after modest data reduction by a two step procedure of 
averaged downsampling along the m/z axis followed 
by PCA. Only the most significant 50-200 PCs are 
usually needed to account for 90% of the energy in the 
IMS data, a significant decrease from many thousand 
m/z values present in the raw data.  

The K-means algorithm is an Expectation-
Maximization algorithm which iteratively alternates 
between 1) assigning pixels to the closest available 
cluster center and 2) recalculating cluster centers as the 
mean spectrum of all the pixels in the cluster. Pixels 
are reassigned, and centroids recalculated until the 
algorithm converges. Initial cluster centers are chosen 
by selecting random spectra from the image. To 
measure the distance between pixels and cluster 
centers, the cosine distance is used. The cosine 
distance measure is calculated as one minus the cosine 
of the angle between vectors describing the spectra. 
Additionally, when using the cosine distance, the new 
cluster centroid is the mean spectra of the pixels in that 
cluster after they have been normalized to unit 
Euclidean length. The final output is a pixel-level 
classification which is visualized as an image where 
pixels are colored by cluster membership. This 
unsupervised classification can then be further refined 
with a supervised technique such as LDA. 

 
2.3. Linear discriminant analysis 

 
Linear discriminant analysis is a supervised 

multivariate classification technique that is used to 
classify the observations of a data set into groups using 
regression equations which maximize between-group 
variance and minimize within-group variance. For 
IMS, LDA is used to maximally differentiate pixels of 

the image based on their spectra, and should provide 
more controlled classification than clustering [3,6]. 

To use LDA the number of pixels in the groups 
being analyzed should be larger than the amount of 
data in spectra, which is usually not the case with IMS 
data. To avoid this problem the data is reduced using 
the previously discussed methods of downsampling 
and PCA. 

To use LDA with mass spectrometry imaging, 
multiple training pixels must be manually selected 
from the image so that the pixels within a group have 
similar spectra.  The clustering procedure described 
earlier is used for this purpose; any combination of 
clusters can be grouped together to define the training 
groups for LDA. Once the groups have been defined, 
LDA classifies each pixel in the image into one of the 
groups, and a resulting image is output where each 
group is represented as a different color.  
 
2.4. Multivariate analysis of variance 

 
Multivariate Analysis of Variance (MANOVA) 

tests differences between the mean of groups of 
multivariate data. To the best of our knowledge, 
MANOVA has not been used to analyze mass 
spectrometry data. Although it is not used as 
commonly as other multivariate techniques, 
MANOVA has been occasionally used in analytical 
chemistry [7]. One step in MANOVA is performing 
canonical correlation. This is similar to PCA in that the 
data are projected onto sets of orthogonal axes. In 
canonical correlation however, the first axis provides 
the largest separation between groups, the second axis 
has the second largest separation, and so on.  

The first step in applying MANOVA is to select 
groups. Groups for MANOVA are selected in the same 
manner as the groups used for training in LDA. Also 
like LDA, to use MANOVA the number of pixels in 
the groups being analyzed should be larger than the 
amount of data in spectra. Since this will usually not be 
true with raw data, the data is reduced using the 
previously discussed methods.  

This data is mean centered and standardized to 
unit standard deviation and then used in canonical 
analysis. The within-group sum of squares and the 
between-group sum of squares matrices are used to 
calculate eigenvectors and eigenvalues [7]. Canonical 
correlation is very similar to PCA, except that in 
canonical correlation the eigenvectors are sorted to 
provide maximum variation between groups whereas 
the eigenvectors of PCA are sorted to provide 
maximum total variation. The entire standardized data 
may then be projected onto the first few eigenvectors. 



The eigenvectors can also be visualized as in PCA to 
reveal regions of interest. 
 
3. Experimentation 

 
In this study, we use imaging mass spectrometry 

to analyze negatively charged lipids in the mouse 
cerebellum. We apply the previously described 
multivariate techniques to the data for ion 
classification and spatial pattern detection using our 
new GUI developed in MATLAB. The imaging data 
shown here were also processed using commonly used 
software (BioMap) for comparison. 

 
3.1. Biological samples 
 

To analyze brain samples by IMS, frozen mouse 
brain tissues (cerebellum) were first sectioned into 
8~10 um slices at -18 ºC using a cryostat (Microm 
Cryo-Star HM 560MV) and thaw-mounted to MALDI 
plates. The neighboring section was thaw-mounted 
onto glass-slide for hematoxylin and eosin staining by 
Leica autostainer. No embedding medium was used 
during the whole process. DHB matrix (30 mg/mL 2,5 
dihydroxybenzoic  acid in 50:50 acetonitrile/0.1%TFA 
in dH2O) was then deposited on the tissue surface by a 
home-built  oscillating capillary nebulizer (OCN) 
matrix sprayer system. Mass spectra of brain tissue 
were acquired using a Voyager DE STR MALDI-
TOF-MS (Applied Biosystems) with a 337nm N2 laser 
under delayed extraction conditions in reflector mode. 
MS data sets were acquired using MMSIT (Novartis 
Pharma AG, Basel, Sweden) over the tissue section. 
Ion images were reconstituted using BioMap software 
package (Novartis Pharma AG, Basel, Sweden) and 
multivariate techniques presented in this paper.  

 
3.2. Software Implementation 

 
In order to easily visualize the link between tissue 

images and molecular profiles, an interface has been 
created in MATLAB. All the methods described in 
section 2 have been integrated into it.  

 
3.2.1. Visualizing mass spectrum profiles. By 
clicking on one or many points in the image, the user 
can display the corresponding mass spectra at each 
location. Points may also be selected by manually 
entering the (x,y) coordinates of the pixel of interest. 
After simultaneous display of multiple molecular 
profiles, it is possible to undock a given mass spectrum 
profile by clicking on it. This gives the user a larger 

visualization of the profile and the ability to zoom in to 
investigate particular m/z values. 
 
3.2.2. Displaying molecular images. After 
determining the m/z ratio(s) of a peak of interest, the 
user may generate grayscale molecular images which 
show where the given molecules are present. Similar to 
the mass spectrum display, the user can choose to 
visualize one ion image or up to six m/z ratios side-by-
side. Two methods can be used for this visualization. 
The first method directly displays the corresponding 
intensity of the given m/z values in grayscale.  

The second method looks near the given m/z ratio 
in all the spectra to determine if the intensity at the m/z 
value is a likely peak or not. The resulting tissue image 
displays the magnitude of the largest peak in the 
neighbourhood, specified by the user, of the selected 
m/z value. The peak detection method used is 
discussed further in section 3.2.3.  

For both methods, if multiple slices are displayed, 
the user can decide to display those slices side-by-side 
or to superimpose them. By superimposing up to three 
of these molecular images, the user can see how 
different molecules coexpress throughout the image. 

Figure 2 shows ion images corresponding to four 
given m/z values in the top panel. The bottom panel of 
the figure shows mass spectrum profiles from six 
spatial locations in the image. 

 

 
Figure 2. Visualization of ion images and profiles. 

Figure 3 (a) shows a superimposed pseudo-
fluorescence ion image for two selected m/z values of a 
mouse cerebellum IMS dataset. Figure 3 (b) shows a 
similar image prepared from a different anatomical 
sample using three m/z values. In each case, spatial 
overlap of molecular species can be observed in the 
blending of the colors red green and blue. This feature 
is particularly useful for detecting the correlation 
among several molecular species.  

 



 

 
Figure 3. Superimposing slices from given m/z using 

pseudo-fluorescence color imaging. 
 

3.2.3. Peak detection. A peak in a mass spectrum 
corresponds to the significant presence of a molecule 
with a specific m/z value. The signal intensity for a m/z 
value is considered a peak if it is the highest among its 
nearest ±N neighboring points. This definition of a 
peak has been given in [8]. This algorithm is 
implemented in C++ and interfaced with the Matlab 
code. 

 

 
Figure 4. GUI for data analysis. 

 
3.2.4. Multivariate analysis. All of the multivariate 
techniques discussed in section 2, PCA, LDA, 
clustering and MANOVA, have been incorporated into 
the GUI. Figure 4 is a screenshot of the analysis 
module. From top to bottom, the first six principal 
components and resulting classification using LDA are 
shown. 

4. Results 
 
4.1. Principal components analysis (PCA) 
 

PCA analysis allows us to quickly find structural 
information and molecules that are important in 
defining regions. Figures 5 and 6 demonstrate the 
capability of PCA to extract underlying information 
out of huge data sets. Instead of an exhaustive 
inspection through all the dimensions, PCA analysis in 
the m/z range of 750-1200 gives rich structural 
information using only a few principal components. 
For example, the second principal component shows 
important peaks around an m/z value of 890, 
corresponding to sulfatide molecules (ST24:0) that 
have been found in brain [9].  

 

 
Figure 5. (a) 2nd PC image (b) 2nd PC spectrum 

on lower range m/z (750 - 1200). 
 

 
Figure 6. (a) 2nd PC image (b) 2nd PC spectrum 

on higher range m/z (1200 - 2000). 
 

The PCA data reveal that the molecular 
distributions match the H&E stained image of the 
cerebellum, shown in Figure 7 (a). Figure 7 (b) shows 
the ion image of sulfatide (ST24:0). The spatial 
distributions of sulfatides indicate their abundances in 
white matter are much higher than in the granular layer 
or molecular layer. The PCA analysis also correlates 
two sulfatide species (ST24:0, m/z 890.7 and 
ST24:1(OH) m/z 904.7) to the same location in the 
white matter. PCA analysis in mass range of 
1200~2000 does not show any significant feature 
(Figure 6), which is consistent with expectations.   

A 
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Figure 7. (a)Anatomical image and  (b) ion image at 
m/z 890.7 of the stained cerebellum 

 
4.2. Clustering 
 

Figure 8 shows the results of applying k-means 
(k=4) clustering to the data collected from the same 
sample used in Figure 7. The lower range of the mass 
spectra (750-1200) was used with 80 principal 
components selected for clustering.  

 

 

Figure 8. Clustering on PCA images. Each color 
represents a different cluster. 

 
4.3. Linear discriminant analysis 
 

Figure 9 show the results of applying LDA to the 
cerebellum sample shown in Figure 7. The m/z range 
from 750-2000 was used in the analysis and 50 
principal components were used in LDA. Two clusters 

were selected for analysis in Figure 9 (a), which 
classifies pixels in white matter separately from the 
rest of the pixels. Three clusters were used in Figure 9 
(b), which shows the pixels classified in three groups, 
background, gray matter, and white matter.  

 

 
Figure 9. (a) LDA on PCA images with 2 clusters and 

(b) with 3 clusters. 
 
4.4. Multivariate analysis of variance 
 

Figure 10 shows the results of using MANOVA 
on the sample from Figure 7. The m/z range from 750-
2000 was used in the analysis and 50 principal 
components were used in MANOVA. Two clusters 
were selected for analysis in Figure 10 (a), which 
distinguishes the gray matter of the cerebellum from 
the background and the white matter. Three clusters 
were used in Figure 10 (b), which shows the 
background, gray matter, and white matter all 
distinctly. 

 

 
Figure 10. (a) MANOVA with 2 clusters and (b) 3 

clusters. 

B 



5. Discussion 
 
BioMap is one of the most popular software tools 

for the analysis of imaging mass spectrometry data. It 
too reconstructs the data into thousands of ion images. 
The ion image of sulfatide (ST24:0) obtained using 
BioMap is shown in Figure 11 (a), and the ion image 
using our program is shown in Figure  11 (b). 

Although Biomap provides some functions for the 
reconstruction of IMS data, it does not provide any 
multivariate tools for the data processing. The onus is 
left on the user to go through all the ion images to find 
meaningful spatial patterns. In general, BioMap 
requires prior information and strong hypotheses in 
order to reach meaningful conclusions. It is also not 
convenient to classify ion images using BioMap. 
Because those images can not be compared directly, 
they need to be investigated by third-party software. In 
contrast, the multivariate approaches described in this 
paper increase the speed of the data analysis and 
improve the quality of ion images while maintaining 
high accuracy.   

Our methodology provides a convenient 
framework to link tissue imaging with molecular 
profiling. The use of PCA to project the data onto 
principal components alone seems to be able to show 
different spatial regions in the mass spec data. Out of 
the first few PCA images, at least some of the images 
consistently show separate spatial regions in the 
sample. Additionally, the results of clustering seem to 
show groupings that have similar spatial distributions 
to those produced by PCA alone (compare Figure 8 
and 5(a)). Both PCA and clustering are very useful 
when  prior information about the sample is limited. 

The results of LDA are very similar to clustering 
when the clusters are used to seed the LDA. Fewer 
clusters can be used though to selectively differentiate 
one tissue type from the rest as figure 9 shows.  

When the image is projected onto the canonical 
variables calculated using MANOVA, images similar 
to the PCA images are created. Unlike PCA, regions 
can be analyzed selectively using MANOVA, and it 
appears that this technique can better differentiate 
some regions than PCA alone. In figure 10 for 
example, notice the same three distinct regions that 
were found using LDA, and that visually the three 
regions appear more distinct than in the PCA image. 

The spatial distributions of sulfatides reveal that 
their abundances in white matter are much higher than 
granular layer and molecular layer. The PCA analysis 
also correlates two sulfatide species (ST24:0 and 
ST24:1) with similar distributions in the white matter, 
which could provide more insight on the biosynthetic 

pathways and functions of negatively charged lipid 
molecules. 

 

 
 

Figure 11. Ion images of sulfatide (ST24:0) in mouse 
cerebellum using  (a) BioMap, and (b) our tool. 
 

6. Conclusion 
 
The multivariate tool presented here provides a 

universal platform for fast and effective processing of 
imaging mass spectrometry data using PCA, 
clustering, LDA and MANOVA. Many features such 
as peak detection, superimposing and multiple 
simultaneous images/spectra display have been 
developed to facilitate the data processing. This tool 
generates clear mass footprints and high-quality 
images of biological samples that match the 
histological results. Future work will involve the 
incorporation of other data reduction methods, such as 
independent components analysis (ICA).  Since much 
of the differentiation is based upon initial clustering, a 
study to define optimal metrics on the space of mass 
spectrum profiles will also greatly improve the 
performances of the data analysis system. 
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