

Probabilistic Modeling of Deep Features for Out-of-Distribution and Adversarial Detection

Nilesh Ahuja, Ibrahima J. Ndiour, Trushant Kalyanpur, and Omesh Tickoo Intel Labs

Introduction

Softmax scores often result in overconfident predictions, especially when the input does not resemble the training data (out-of-distribution), or has been crafted to attack and "fool" the network (adversarial example).

We present an approach for detecting OOD and adversarial samples in DNNs based on probabilistic modeling of the deep-features. Our contributions include:

• Demonstrating that the high-dimensional features (of a DNN) actually reside in a low-dimensional subspace, that can accurately be captured with statistical dimensionality reduction techniques such as principal component analysis (PCA).

- Modeling the (embedded) deep features with parametric, class-conditional multivariate distributions (e.g. Gaussian, Gaussian mixture).
- Demonstrating that our method outperforms the state of the art by a substantial margin (up to 13 percentage points in AUROC and AUPR), while incurring negligible computational cost at inference.

Our Approach

Scatterplot of 2D features (logits) for a simple binary classifier example

Block diagram of our approach

Experiments and Results

			SVHN			LSUN			FGSM	
		GMM	Separate	Tied	GMM	Separate	Tied	GMM	Separate	Tied
AUPR	Layer 2	62.7	62.2	61.6	87.9	88	79.4	92.6	92.5	90.9
	Layer 1	85.9	83.5	77.8	96.3	95.7	95	95	95.1	95.1
	Layer 0	84.3	82.9	80.4	96.3	95.9	95.5	94.8	94.7	94.9
UROC	Laver 2	90.2	90.1	91.6	87.8	87.9	78.1	93.6	93.6	93.1
	Layer 1	94.1	92.3	91.6	95.5	94.7	94.1	93.4	93.2	93.3
	Layer 0	94.9	93.4	92.9	95.7	95.1	94.8	93	92.6	93

AUPR and AUROC scores for OOD and adversarial detection: GMM, Sep (Gaussian with separate

covariance per class), Tied (Gaussian with tied covariance). Best values are shown in red.

Histogram of log-likelihood scores

		MNIST		CIFAR			
	GMM	Sep	Tied	GMM	Sep	Tied	
Layer 0	98.9	98.6	98.6	90.8	90.8	92.2	
Layer 1	98.2	98.6	98.6	95.0	95.3	95.3	
Layer 2	86	97.4	98.3	95.3	95.2	95.3	
		98.99		95.3			

Classification Accuracies using Log-likelihoods

Conclusions & Future Work

- We show that modeling deep-features with parametric probability distributions provides reliable uncertainty scores, which can enable reliable detection of OOD and adversarial samples as well as classification of in-distribution samples.
- Future work will seek to analyze the evolution of the feature distributions during training.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate © 2019 Intel Corporation. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Fourth Workshop on Bayesian Deep Learning (NeurIPS 2019), Vancouver, Canada