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▪ Success of the data poisoning attack with simple backdoor patterns (hardly noticeable) shows the real threat associated with these 

attacks on the machine learning models. 

▪ Uncertainty estimates obtained from the two presented approaches Deep Probabilistic Features and Bayesian Neural Networks have 

the potential to detect backdoor data poisoning attacks. 

▪ We demonstrated probabilistic models are important tool to mitigate data poisoning attacks in machine learning systems, and 

presented a potential research thread to the BDL community to mitigate the data poisoning attacks. 

• Data poisoning attacks are the security threats introduced in machine learning models during the training phase.

• We investigate backdoor data-poisoning attack on deep neural networks by inserting a backdoor pattern in training images. This results

in compromised model misclassifying poisoned test samples while maintaining high accuracies for the clean test-set.

• We present two promising deep probabilistic models for detection of poisoned samples by quantifying the uncertainty estimates

associated with the trained models.

Approach 1: Probabilistic modeling of deep features (DF) [1]

• Training:  A generative model is defined over the deep neural 

network (DNN) features by fitting class-conditional probability 

distributions. 

• Inference: Log-likelihood scores of the features of a test sample 

are calculated with respect to fitted distributions to predict the 

class probability.

• Log-likelihood scores are used to discriminate clean samples 

(which should have high likelihood) from poisoned samples 

(which should have low likelihood).

Approach 2: Bayesian Neural Networks (BNN) 

• Training: Given the prior distribution and model likelihood, Mean 

Field Variational Inference (MFVI) method [2] is used to infer the 

posterior distribution over the model parameters. 

• Inference: Predictive distribution is obtained through multiple 

stochastic Monte Carlo forward passes through the network by 

sampling network parameters from  the posterior distribution. 

• Model uncertainty is used to distinguish between clean and 

poison samples, which quantifies mutual information between 

parameter posterior and predictive distributions.
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Backdoor pattern Successful backdoor data poisoning attack misclassified Digit-0 as Digit-1.
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0 10 20 30 40 50

DNN 99.21 99.28 99.26 99.35 99.32 99.24

DF - 99.04 98.74 98.94 99.04 98.97

BNN - 99.56 99.64 99.56 99.51 99.50

DNN - 98.78 98.87 99.16 99.12 99.29

DF - 35.54 17.55 11.87 7.32 20.54

BNN - 99.54 99.44 99.50 99.59 99.43

DNN 88.90 88.36 88.23 87.39 87.87 88.74

DF - 88.16 88.32 88.20 88.95 88.26

BNN - 89.48 89.63 89.80 90.00 90.05

DNN - 84.08 81.95 86.40 86.94 88.29

DF - 69.66 64.37 75.00 75.86 80.52

BNN - 88.30 88.96 88.82 90.02 90.05
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10 20 30 40 50

DNN 83.18 81.58 68.3 54.31 53.14

DF 99.43 99.7 99.91 99.96 99.96

BNN 97.47 86.24 72.9 58.46 46.46

DNN 40.62 64.16 36.39 38.68 41.99

DF 91.87 74.58 90.94 91.81 85.17

BNN 92.24 82.03 70.95 58.89 49.22
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Classification Accuracies for MNIST and CIFAR10 datasets on Clean 
(held-out) and Poisoned (backdoor) samples. 

AUPR scores for the DNN, DF and BNN models on MNIST and CIFAR-10 datasets. 

• Backdoor attack is successful in compromising the DNN model resulting in 

similar accuracies for clean and poisoned test samples. 

• DF method is successful in dropping the classification accuracy of the 

poisoned data flagging a compromised model. 

• DF and BNN methods show higher  AUPR scores than the deterministic 

DNN models.
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* Lower is better. ** Higher is better.


