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Abstract— This paper describes an observer for estimation
of the rigid pose and shape states associated to an object being
tracked in an image sequence. The defined observer utilizes
standard estimation strategies for the finite-dimensionalrigid
pose sub-states, and a novel strategy for the shape sub-
states. In particular, the shape sub-state observer utilizes
an implicit probability field, where the 50% probability iso -
contour defines the object shape. A general purpose second-
order model and a corresponding correction scheme are
defined for the observer state. The observer is applied to
recorded imagery and its performance is examined using
objective error metrics.

I. I NTRODUCTION

This paper considers the problem of accurate contour-
based, or segmentation-based, target tracking when faced
with uncertainty in the form of imaging noise and ap-
proximate segmentation models. Imaging noise can arise
from the actual sensing procedure [9] or from the image
handling technique (if lossy compression is required to
transmit data over a network). Approximate segmentation
models arise from the use of image formation models that
are simple relative to the true 3D scene being imaged.

Segmentation-based tracking often views tracking as
a series of statically determined measurements for each
frame. The introduction of temporal knowledge as derived
from the image sequence leads to improvements in the
tracking procedure [2]. Alternatively, the tracking problem
can be tackled over the entire spatio-temporal volume of
image data [17], [22]. Such an approach is warranted
when the objective is to post-process a pre-existing video
sequence. It is not well-suited, however, to the problem of
online, recursive estimation.

The tracking problem can be viewed as an estimation
problem given temporally correlated measurements. A
Markovian assumption relating the current parameters to
the prior parameters simplifies the problem to one of recur-
sive estimation. Recursive methods often incorporate (low)
finite-dimensional parametrizations of the target shape
space, [6], [7], [21]. Their design requires a careful choice
of the training set, a reduction analysis, and possibly a
learning phase to estimate the state evolution model in the
reduced space. Unfortunately, many of these techniques
are unable to cope with elastic targets whose geometry
and shape drastically change through time or fail to be

represented in the training set; this is known as the out-
of-sample problem [1].

The work here considers the unconstrained segmenta-
tion and tracking problem. Instead of relying on shape
information to constrain the segmentation, temporal con-
sistency will be imposed on the segmentations and track
points. Temporal consistency is obtained by describing
an observer for the generated measurements and using
the observer states as the estimated state, rather than
the measurements. Related work includes [3], [15], [16],
[20], which examined temporal consistency in an infinite-
dimensional non-parametrized setting. Alternatively, the
overall object motion can be decomposed into a principal
fiber, consisting of a group component (the rigid pose) and
a shape component, to be filtered over as in [11].

Contributions:The contributions of this paper include
(1) the definition of the estimation problem as an ob-
server on the group and shape, (2) the use of an implicit
probability field description for the shape state, (3) the
incorporation of a dynamical model for the shape space,
and (4) a correction method adapted to the probabilistic
state model which decouples from the group correction.
Furthermore, quantitative evaluation of tracking results
for both pose and segmentation are provided, which is
unique as segmentation-based papers do not historically
quantitatively evaluate the segmentation results against
ground truth. Lastly, the observer strategy is agnostic of
the segmentation strategy, so long as the measured shape
state can be converted into a probability field.

II. STATE DESCRIPTION

As described in [23], the state description of a tracked
object in a video sequence can be decomposed into a group
motion and a shape deformation (the decomposition is
not unique). In a follow-up, filtering of the signal was
achieved through the minimization of an energy in the
joint group-shape space [11], which coupled the group
and shape correction strategy. The group motion was the
special Euclidean groupSE(2) or its subgroupE(2),
the Euclidean group. The shape description was given by
non-parametric active contours [4]. Non-parametric active
contours embed the segmented closed curve into a higher-
dimensional space, e.g., the level-set of a signed distance
function.



In practice, any function capable of implicitly describing
a shape through the selection of an iso-contour suffices.
This work proposes to utilize a probability field,P : D →
[0, 1] where D ⊂ R

2 compact. The implicitly defined
contourC is given by the setC = {r | P (r) = c} where
c ∈ (0, 1) andr ∈ D. Pixels with probabilities higher than
or equal toc are presumed to belong to the target and
those with lower probabilities are presumed to belong to
the background object (we use the valuec = 0.5).

Consequently, the shape space description is the space
of probability fields defined on a compact domain. For
second-order systems, we will also require the velocity
field associated to the probability field, denoted byX :
D → R

2. Thus, at its most complex, the complete state is
described by the group space and its velocity, denoted by
(g, ξ), and the probability field plus its associated velocity
field, (P, X).

III. O BSERVERCOMPONENTS

An observer requires the definition of three major
components plus an input, (1) a dynamic model for the
state, (2) a measurement model for the state, and (3) a
correction strategy for the internal model given state mea-
surements. The state measurements should occur external
to the observer. They will be generated by a segmentation
algorithm, called thesensor measurement, applied to the
current image.

A. Dynamic Update Model

The dynamic model is based on prior knowledge that
is available regarding the motion of the target. Describing
the dynamic evolution of an unconstrained shape can be
somewhat difficult, therefore the motion models proposed
will be generic, see Table I. For more precise motion mod-
els one can derive a motion model from first principles,
given knowledge of the target.

Static Prior: This model simply assumes that there is
no change in the state from one time-step to the next.

Constant Group Velocity:This model only considers the
temporal evolution of the group space with a constant
shape model. It is appropriate for rigid objects, almost-
rigid objects, or slowly varying objects (relative to the
measurement rate).

Constant Velocity:Here, the group has constant velocity
and the shape is deforming with a constant rate of defor-
mation.

B. Sensor Measurement

Measurement of the target can be achieved through
any segmentation algorithm applied to the current image,
so long as the segmentation is converted to an implicit
probability field description (further discussed in Section
IV). Candidate algorithms include Bayesian segmentation
[8], active contours [2], graph cuts [13], etc.

In a classical observer the measurements would be com-
pletely independent of the observer states, however image

TABLE I

STATE MOTION MODELS

Static prior

{
ġ = 0

Ṗ = 0

Constant group
velocity

{
ġ = ξ, ξ̇ = 0

Ṗ = 0

Constant velocity (1)

{
ġ = ξ, ξ̇ = 0

Ṗ + ∇P · X = 0, Ẋ = 0

Constant velocity (2)

{
ġ = ξ, ξ̇ = 0

Ṗ + ∇P · X = 0, Ẋ + ∇X · X = 0

analysis of video sequences has the unique nature of not
explicitly providing the necessary signal. Instead it must
be extracted from the image using an image processing or
computer vision algorithm. The measurement procedure
may not completely determine the necessary target state
measurements (due to the non-uniqueness of the group +
shape decomposition). Consequently, a registration step is
required to describe the predicted and measured shape with
respect to the same coordinate frame.

Once localization and segmentation are performed on
the current image, a registration procedure is applied to
match the resulting measured probability field with the
predicted probability field, yielding a measurementgm

for the group motion and the measurementPm for the
shape. If desired, the velocity fieldXm can be measured by
computing the optical flow [10] between two subsequent
aligned images. In practice, the group velocityξ is not
directly measurable.

C. Model Measurement

The model measurement is obtained by extracting the
components of the internal state model that are equivalent
to those obtained from the sensor measurement.

D. Correction

The role of the correction model is to generate an
updated estimation of the observer internal state given
the predicted measurement and the actual measurement.
For the finite-dimensional group component, generating
a correction is relatively straightforward. However, for
the shape space, there is no unique method for doing
so. Instead the infinite-dimensional manifold nature of
the unconstrained shape space implies the existence of
multiple correction strategies [14], [16].

a) Group Space and Velocities:In this paper, the
group space filter is typically chosen to be on eitherTE(2)
or TSE(2), the tangent spaces toE(2) andSE(2), respec-
tively. For the former, a discrete Kalman filter correction
is used. For the latter, a discrete extended Kalman filter
correction is used.

b) Shape Space:Correction on the probability field is
achieved through geometric averaging. Given the predicted



probability field,P̂−, and the current measured probability
field, P̂m, the current corrected probability field,̂P+, is

P̂+(r) =
(
P̂−(r)

)1−Kxx

(
P̂m(r)

)Kxx

,

whereKxx varies in the range[0, 1] and is chosen based on
uncertainty estimates of the measurement and the predic-
tion. Low Kxx is biased towards the predicted probability,
high Kxx is biased towards the measured probabilities.
This method works when the prediction and measured
probability fields dot not differ radically.

When the two fields have sufficient disparity, then the
geometric averaging technique no longer works due to
non-local shape effects. Instead, an error vector fieldXerr

needs to be computed between the predicted and measured
densities. Flowing along the error vector field should take
P− to Pm in unit time. The error vector field between the
two densities can be computed using a variety of methods,
such as optical flow, displacement flow or optimal mass
transport [16], [18]. The correction is then given by

P̂+ = ΦXerr

Kxx

(P̂−),

whereΦXerr

Kxx

denotes the flow alongXerr for time Kxx.
In practice, we did not find this to be necessary.

c) Shape Tangent - Velocities:The velocity field is
much simpler to correct on since it is a vector space. There
are two ways to induce a correction on the velocity field,
one is through an error in the measured probabilities and
the other is through an error in the shape velocities:

X+ = X− + KvxXerr(Pm, P−) + Kvv(Xm − X−)

whereXerr(Pm, P−) is as defined above. The parameters
Kvx and Kvv vary in the range[0, 1] and are chosen
according to uncertainty estimates of the measurement and
prediction.

IV. EXPERIMENTS AND RESULTS

This section describes the experimental setup used to
implement and validate the observer.

1) Sensor Measurement:As alluded to in Section III-
B, the measurements of the shape can be performed using
any segmentation algorithm. If the segmentation algorithm
does not automatically generate a probability field, then
conversion to implicit probability field form is required.

As a case in point, consider an active contour with an
implicit representation using the signed-distance function,
Ψ : D → R, then the measurement must be mapped into a
probability field description. Such a mapping can be done
using the regularized Heaviside function

P (·) =
1

2

(
1 +

2

π
arctan

(
Ψ(·)
σ

))
,

or by applying the cumulative density function of the nor-
mal distribution (with zero mean) to the negative signed-
distance function,

P (·) = cdf(−Ψ(·); σ) =
1

2

(
1 + erf

(
Ψ(·)
σ
√

2

))
,

whereσ is the standard deviation. In both cases,σ is a
regularization parameter.

2) Setup:Tracking experiments were performed on sev-
eral image sequences using four different algorithms, plus
one instantiation of the observer. Two of the algorithms
were purely segmentation-based tracking algorithms uti-
lizing, Bayesian segmentation [8] and active contours
[19]. The third algorithm run was the deformotion filter
technique developed in [11], utilizing the Bayesian seg-
mentations as measurements. The fourth algorithm was a
shape-based active contour tracking algorithm [6], however
only for the infrared sequence was it realistic to caputre
the dynamic motion model. We obtained 7 shapes for the
infrared sequence, 67 sample shapes from the construction
worker imagery and 60 shapes from the aquarium imagery
we have. For infrared data set the five dominant eigen-
modes were kept, and ten dominant eigenmodes were kept
for the others. Lastly, the probabilistic contour observer
with Bayesian segmentation as the measurement strategy
was implemented. Note that the deformotion filter and the
observer share the same measurement method. Further-
more, all strategies share the same statistical description
of the target and background distributions (some use the
negative log likelihood for segmentation purposes). For all
methods, we applied the same filter to the group space; a
second order Kalman filter.

In order to compare the resulting track signals, all of
the sequences were hand-segmented to generate a ground-
truth signal. Quantitative metrics were used to objectively
compare the performances of the different techniques. On
the group space, we used theL2 and L∞ errors. On the
shape, we used the number of misclassified pixels, the
Hausdorff distance, and the Sobolev distance. Information
about the shape metrics can be found in [5], [12].

3) Results:Figures 1-3 feature, for each sequence and
each technique, three frames from the tracking results.
The frames from left to right correspond to the best
frame tracked, the average tracking behavior, and the
worst frame tracked. Table II shows for each metric and
each technique, the average error and the maximal error
obtained throughout the given sequence (strikeouts indicate
loss of track).

The Bayesian segmentation algorithm used as a tracker
tends to provide the noisiest contour estimates, due to a
moderate smoothing term. Sources of error include image
noise, image clutter, and poor modeling of the target and
background distributions. Increasing the smoothing term
would lead to undersegmentations of the target. For the
active contour, the smoothing term was set to provide the
best overall segmentation on a frame-by-frame basis. The
Bayesian observer is able to utilize temporal consistency
to arrive at a smoother result without requiring significant
spatial smoothing on a single-frame basis.

Consider now the shape-based and deformotion filter
techniques. When the shape-based methods tracks, it is



possible to see incomplete or incorrect segmentations
arising from the inability of the tracker to conform to a
shape sufficiently outside of its training set. The mismatch
is most obvious for Sequence 3 (Figure 3). Even though
a couple of the bending segmentations were used, they
did not factor into the main eigenmodes. It may be
possible to improve the segmentation by allowing for more
eigenmodes or using a more complicated shape method
[21], however this would increase the computational cost
of the algorithm and possibly also the size of the training
set. The deformotion-based technique uses an averaging
procedure on the shape, due to a static model on the shape
dynamics, and is unable to efficiently capture fast shape
deformations (see Figure 2 and Table II-b).

The quantitative comparison of the methods is given
in Table II. The performance metrics should be examined
as an ensemble since they rate different aspects of curve
tracking performance. The Bayesian observer performs as
well as the other techniques when there is no perturbation
(see average error). When perturbations occur and the
measurements become unreliable, the observer can atten-
uate the measurement perturbations (low maximum errors
in Table II). Overall, the Bayesian observer demonstrates
good temporal consistency in the target contour, given the
quality of the measurements. The technique is also able to
handle highly variable shape deformations.

Lastly, the observer strategy was applied to the active
contour algorithm and also to a graph-cut tracking algo-
rithm [13] for Sequence 3. Results are provided in Table II-
d. Note that the original test of the active contour was
not able to track, but with the addition of the observer,
the target can be tracked completely. Performance is
comparable to, or better than, the Bayesian with observer.
The observer was also able to improve upon the graph-cut
tracking algorithm.

These examples indicate that improvements can be
achieved by using an observer in conjunction with standard
segmentation algorithms for target tracking. Moreover,
the technique is robust to parameter selection. Figure 4
displays the average number of misclassified pixels when
the comparison tracking algorithms and the observer are
used to track multiple noise-corrupted sequences with a
fixed set of parameters.

V. CONCLUSION

This paper presented the design of a visual tracking
observer utilizing an implicit probablistic representation, in
the guise of a probability field, for the internal state of the
observer. A geometric averaging method was detailed for
filtering the shape state, together with a filtering strategy
on the velocity field of the shape state. The observer is
agnostic of the segmentation strategy. Further, the filtering
of the rigid motion and the shape motion are decoupled,
providing flexibility in the observer design. Application of
the algorithm to infrared, construction site, and aquarium

video sequences was performed, including a quantitative
performance analysis. When perturbations occur leaving
segmentation measurements corrupted, the observer is ca-
pable of attenuating them.
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Frame

(b) Ground Truth

67 89  6
Frame

(c) Bayesian

 11 113  61
Frame

(d) Active Contour

117 133   6
Frame

(e) Deformotion Filter

 83  29 152
Frame

(f) Shape-based

67 95 30
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Fig. 1. Snapshots of Sequence 1.
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Fig. 2. Snapshots of Sequence 2.
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Fig. 3. Snapshots of Sequence 3.
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Fig. 4. Robustness to parameter selection. Using a fixed set of
parameters for each algorithm, tracking is performed on noise-corrupted
sequences with increasing levels of noise. The average number of
misclassified pixels is displayed for each technique and each sequence.



TABLE II

COMPARATIVE PERFORMANCES USING OBJECTIVE MEASURES OF QUALITY.

(a) Sequence 1

Metric / Algorithm Bayesian AC Deformotion Shape Observer

Trackpt error (L2/L∞) 1.8 / 4.4 1.4 / 3.9 1.2 / 3.4 3.0 / 10.5 1.2 / 4.4

NMP (avg/max) 129 / 242 91 / 160 116 / 211 105 / 199 90 / 155

Hausdorff (avg/max) 6.2 / 13.5 4.5 / 9.5 4.0 / 6.7 3.9 / 7.7 3.5 / 6.6

Sobolev (avg/max) 3.2 / 10.5 2.4 / 6.9 1.5 / 3.6 1.5 / 5.4 1.2 / 3.3

# Frames tracked 180 180 180 180 180

(b) Sequence 2

Metric / Algorithm Bayesian AC Deformotion Shape Observer

Trackpt error (L2/L∞) 8.6 / 13.2 2.8 / 7.0 2.6 / 12.3 5.6 / 15.8 2.7 / 5.8

NMP (avg/max) 251 / 969 244 / 549 248 / 769 575 / 833 279 / 478

Hausdorff (avg/max) 10.9 / 18.4 11.1 / 19.2 12.3 / 19.7 12.0 / 22.5 14.6 / 20.7

Sobolev (avg/max) 8.2 / 52.9 12.9 / 95.8 11.9 / 46.7 13.2 / 43.9 12.9 / 26.9

# Frames tracked 477 478 477 475 478

(c) Sequence 3

Metric / Algorithm Bayesian AC Deformotion Shape Observer

Trackpt error (L2/L∞) 16.6 / 24.4 11.5/ 52.3 7.9 / 16.0 5.4 / 12.3 8.0 / 15.5

NMP (avg/max) 253 / 1420 288/ 1328 202 / 755 299 / 536 171 / 508

Hausdorff (avg/max) 10.2 / 35.0 30.0 / ∞ 7.8 / 26.2 10.9 / 25.8 7.7 / 27.4

Sobolev (avg/max) 8.2 / 70.6 100.0 / ∞ 5.8 / 35.3 11.7 / 38.1 6.5 / 81.8

# Frames tracked 200 150 200 200 200

(d) Sequence 3 with observer using measurements from Graph Cut and Active Contour segmentations

Metric / Algorithm Observer with AC
measurements

Graph Cut Observer with Graph
Cut measurements

Trackpt error (L2/L∞) 6.5 / 22.1 7.9 / 31.1 6.9 / 27.4

NMP (avg/max) 192 / 663 288 / 1014 219 / 457

Mean Laplace (avg/max) 8.3 / 25.4 12.8 / 32.0 11.7 / 25.9

Max Laplace (avg/max) 6.2 / 35.8 8.3 / 70.8 10.2 / 80.1

# Frames tracked 200 200 200


