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Abstract— This paper describes an observer for estimation represented in the training set; this is known as the out-
of the rigid pose and shape states associated to an objectbgi  of-sample problem [1].
tracked in an image sequence. The defined observer utilizes  The work here considers the unconstrained segmenta-
standard estimation strategies for the finite-dimensionatigid . - .
pose sub-states, and a novel strategy for the shape sub- _t'on and_ tracking pro'{"em- Instead Of_rely'ng on shape
states. In particular, the shape sub-state observer utiligs information to constrain the segmentation, temporal con-
an implicit probability field, where the 50% probability iso -  sistency will be imposed on the segmentations and track
contour defines the object shape. A general purpose second- points. Temporal consistency is obtained by describing
order model and a corresponding correction scheme are o, gpserver for the generated measurements and using
defined for the observer state. The observer is applied to .
recorded imagery and its performance is examined using the observer states as the estlmated state, rather than
objective error metrics. the measurements. Related work includes [3], [15], [16],
[20], which examined temporal consistency in an infinite-
|. INTRODUCTION dimensional non-parametrized setting. Alternativelyg th
overall object motion can be decomposed into a principal
This paper considers the problem of accurate contoufiber, consisting of a group component (the rigid pose) and
based, or segmentation-based, target tracking when facg&hape component, to be filtered over as in [11].
with uncertainty in the form of imaging noise and ap- Contributions: The contributions of this paper include
proximate segmentation models. Imaging noise can arigg) the definition of the estimation problem as an ob-
from the actual sensing procedure [9] or from the imageerver on the group and shape, (2) the use of an implicit
handling technique (if lossy compression is required t@robability field description for the shape state, (3) the
transmit data over a network). Approximate segmentatioificorporation of a dynamical model for the shape space,
models arise from the use of image formation models thaind (4) a correction method adapted to the probabilistic
are simple relative to the true 3D scene being imaged. state model which decouples from the group correction.
Segmentation-based tracking often views tracking aSurthermore, quantitative evaluation of tracking results
a series of statically determined measurements for ea@r both pose and segmentation are provided, which is
frame. The introduction of temporal knowledge as derivednique as segmentation-based papers do not historically
from the image sequence leads to improvements in thfuantitatively evaluate the segmentation results against
tracking procedure [2]. Alternatively, the tracking preil  ground truth. Lastly, the observer strategy is agnostic of
can be tackled over the entire spatio-temporal volume ahe segmentation strategy, so long as the measured shape
image data [17], [22]. Such an approach is warrantestate can be converted into a probability field.
when the objective is to post-process a pre-existing video
sequence. It is not well-suited, however, to the problem of Il. STATE DESCRIPTION
online, recursive estimation. As described in [23], the state description of a tracked
The tracking problem can be viewed as an estimatioobject in a video sequence can be decomposed into a group
problem given temporally correlated measurements. Aotion and a shape deformation (the decomposition is
Markovian assumption relating the current parameters twot unique). In a follow-up, filtering of the signal was
the prior parameters simplifies the problem to one of recuachieved through the minimization of an energy in the
sive estimation. Recursive methods often incorporate)(lowoint group-shape space [11], which coupled the group
finite-dimensional parametrizations of the target shap&nd shape correction strategy. The group motion was the
space, [6], [7], [21]. Their design requires a careful choicspecial Euclidean grouE(2) or its subgroupE(2),
of the training set, a reduction analysis, and possibly the Euclidean group. The shape description was given by
learning phase to estimate the state evolution model in th®n-parametric active contours [4]. Non-parametric &ctiv
reduced space. Unfortunately, many of these techniquesntours embed the segmented closed curve into a higher-
are unable to cope with elastic targets whose geometdimensional space, e.g., the level-set of a signed distance
and shape drastically change through time or fail to b&inction.



TABLE |

In practice, any function capable of implicitly describing STATE MOTION MODELS

a shape through the selection of an iso-contour suffices.
This work proposes to utilize a probability fielé?,: D —

[0,1] where D C R? compact. The implicitly defined | Static prior ‘;’-3100
contourC is given by the set = {r | P(r) = ¢} where . 0
c € (0,1) andr € D. Pixels with probabilities higher than | Constant group ‘;7;_% €=
or equal toc are presumed to belong to the target and Ve'oct . _g

g=s

O

those with lower probabilities are presumed to belong t
the background object (we use the value 0.5). ) .
Consequently, the shape space description is the spaceconstant velocity (2)| { 2.~ 5 ¢=0
of probability fields defined on a compact domain. For PHVvP-X=0, X+VX.X=0
second-order systems, we will also require the velocity
field associated to the probability field, denoted Ky:
D — R2. Thus, at its most complex, the complete state ignalysis of video sequences has the unique nature of not
described by the group space and its velocity, denoted lexplicitly providing the necessary signal. Instead it must
(g,¢), and the probability field plus its associated velocityoe extracted from the image using an image processing or
field, (P, X). computer vision algorithm. The measurement procedure
may not completely determine the necessary target state
Ill. OBSERVERCOMPONENTS measurements (due to the non-uniqueness of the group +
An observer requires the definition of three majoishape decomposition). Consequently, a registration step i
components plus an input, (1) a dynamic model for theequired to describe the predicted and measured shape with
state, (2) a measurement model for the state, and (3)r@spect to the same coordinate frame.
correction strategy for the internal model given state mea- Once localization and segmentation are performed on
surements. The state measurements should occur exterii@ current image, a registration procedure is applied to
to the observer. They will be generated by a segmentatigfatch the resulting measured probability field with the
algorithm, called thesensor measuremerdpplied to the predicted probability field, yielding a measurement
current image. for the group motion and the measuremdt)t for the
shape. If desired, the velocity field,, can be measured by

A. Dynamic Update Model . X
computing the optical flow [10] between two subsequent

_ The dynamic model is based on prior knowledge thal}iyneq images. In practice, the group velocityis not
is available regarding the motion of the target. Descnbmgirecﬂy measurable.

the dynamic evolution of an unconstrained shape can be
somewhat difficult, therefore the motion models proposed. Model Measurement
will be generic, see Table |. For more precise motion mod-

els one can derive a motion model from first principles . .
P P tomponents of the internal state model that are equivalent

given knowledge of the target. to those obtained from the sensor measurement
Static Prior: This model simply assumes that there is '

no change in the state from one time-step to the next.
Constant Group VelocityThis model only considers the . .
temporal evolution of the group space with a constant 1n€ role of the correction model is to generate an

shape model. It is appropriate for rigid objects, almost!Pdated estimation of the observer internal state given
rigid objects, or slowly varying objects (relative to thethe predicted measurement and the actual measurement.

measurement rate). For the finite-dimensional group component, generating
Constant VelocityHere, the group has constant velocity® correction is relatively_straightfqrward. However, fo'r
and the shape is deforming with a constant rate of defof?® Shape space, there is no unique method for doing

Constant velocity (1) {5 Gp. v o i.(:_oo

The model measurement is obtained by extracting the

D. Correction

mation. so. Instead the infinite-dimensional manifold nature of
the unconstrained shape space implies the existence of
B. Sensor Measurement multiple correction strategies [14], [16].

Measurement of the target can be achieved through a) Group Space and Velocitiedn this paper, the
any segmentation algorithm applied to the current imag@roup space filter is typically chosen to be on eithigf(2)
so long as the segmentation is converted to an implicitr 7’SE(2), the tangent spaces f(2) andSE(2), respec-
probability field description (further discussed in Seatio tively. For the former, a discrete Kalman filter correction
IV). Candidate algorithms include Bayesian segmentatiois used. For the latter, a discrete extended Kalman filter
[8], active contours [2], graph cuts [13], etc. correction is used.

In a classical observer the measurements would be com- b) Shape SpaceCorrection on the probability field is
pletely independent of the observer states, however imagehieved through geometric averaging. Given the predicted



probability field,P—, and the current measured probabilitywhere o is the standard deviation. In both casesis a
field, P,,, the current corrected probability field*, is regularization parameter.

~ ~ 1-Kpw / ~ Ko 2) Setup:Tracking experiments were performed on sev-

Pr(r) = (P (7')) (Pm(r)) ’ eral image sequences using four different algorithms, plus
wherek,, varies in the rangf, 1] and is chosen based on©Né instantiation of the observer. Two of the algorithms
uncertainty estimates of the measurement and the prediere purely segmentation-based tracking algorithms uti-
tion. Low K, is biased towards the predicted probability!izing, Bayesian segmentation [8] and active contours
high K. is biased towards the measured probabilitied19]- The third algorithm run was the deformotion filter
This method works when the prediction and measurei§chnique developed in [11], utilizing the Bayesian seg-
probability fields dot not differ radically. mentations as measurements. The fourth algorithm was a

When the two fields have sufficient disparity, then théhape-based active contour tracking algorithm [6], howeve

geometric averaging technique no longer works due t@nly for the infrared sequence was it realistic to caputre
non-local shape effects. Instead, an error vector fielg.  the dynamic motion model. We obtained 7 shapes for the
needs to be computed between the predicted and measuidigared sequence, 67 sample shapes from the construction
densities. Flowing along the error vector field should tak&orker imagery and 60 shapes from the aquarium imagery
P~ to P,, in unit time. The error vector field between theWe have. For infrared data set the five dominant eigen-
two densities can be computed using a variety of methodglodes were kept, and ten dominant eigenmodes were kept
such as optical flow, displacement flow or optimal mastr the others. Lastly, the probabilistic contour observer

transport [16], [18]. The correction is then given by with 'Bayesian segmentation as the measurement strategy
Bt — e (B was implemented. Note that the deformotion filter and the
T T Ko ’ observer share the same measurement method. Further-
where@ﬁﬁ'f”‘ denotes the flow along.,, for time K,,. More, all strategies share the same statistical desariptio
In practicéf we did not find this to be necessary. of the target and background distributions (some use the
c) Shape Tangent - Velocitie§he velocity field is negative log likelihood for segmentation purposes). Fbr al
much simpler to correct on since it is a vector space. Thefgethods, we applied the same filter to the group space; a
are two ways to induce a correction on the velocity fieldsecond order Kalman filter.
one is through an error in the measured probabilities and In order to compare the resulting track signals, all of
the other is through an error in the shape velocities:  the sequences were hand-segmented to generate a ground-
e _ _ truth signal. Quantitative metrics were used to objecyivel
X7 = X7 Ko Xerr (P, P7) + Koo (X = X7) compare the performances of the different techniques. On
whereX.,.(P,,, P~) is as defined above. The parametershe group space, we used tlig and L., errors. On the
K,, and K,, vary in the range[0,1] and are chosen shape, we used the number of misclassified pixels, the
according to uncertainty estimates of the measurement apgusdorff distance, and the Sobolev distance. Information
prediction. about the shape metrics can be found in [5], [12].
IV. EXPERIMENTS AND RESULTS 3) Results:Figures 1-3 feature, for each sequence and
This section describes the experimental setup used i(%Ch technique, three ”a”.‘es from the tracking results.
implement and validate the observer. e frames from left to right cor_respond tp the best
frame tracked, the average tracking behavior, and the

1) Sensor Measuremenfs alluded to in Section IlI- X
B, the measurements of the shape can be performed us'\p{arst frame tracked. Table Il shows for each metric and

any segmentation algorithm. If the segmentation algorith/g@ch technique, the average error and the maximal error
does not automatically generate a probability field, thefPtained throughout the given sequence (strikeouts itelica

conversion to implicit probability field form is required. 0SS Of track). _ _

As a case in point, consider an active contour with an The Bayesian segmentation algorithm used as a tracker
implicit representation using the signed-distance fumcti tends to provide Fhe noisiest contour estimates, du_e to a
¥ : D — R, then the measurement must be mapped intomoderate smoothing term. Sources of error include image
probability field description. Such a mapping can be don@0ise, image clutter, and poor modeling of the target and

using the regularized Heaviside function background distributions. Incre_asing the smoothing term
1 9 W () would lead to undersegmentations of the target. For the
P(:) = 5 (1 + — arctan <—>) , active contour, the smoothing term was set to provide the

s g

_ _ _ _ best overall segmentation on a frame-by-frame basis. The
or by applying the cumulative density function of the norBayesian observer is able to utilize temporal consistency
mal distribution (with zero mean) to the negative signedo arrive at a smoother result without requiring significant
distance function, spatial smoothing on a single-frame basis.
B L 140) Consider now the shape-based and deformotion filter
P() = cdf(=¥();0) = 2 (1 +erf <U\/§)> ' techniques. When the shape-based methods tracks, it is



possible to see incomplete or incorrect segmentationddeo sequences was performed, including a quantitative

arising from the inability of the tracker to conform to aperformance analysis. When perturbations occur leaving

shape sufficiently outside of its training set. The mismatchegmentation measurements corrupted, the observer is ca-
is most obvious for Sequence 3 (Figure 3). Even thougbable of attenuating them.

a couple of the bending segmentations were used, they
did not factor into the main eigenmodes. It may be

possible to improve the segmentation by allowing for moreltl P- dAfiaS'_G- Ra”da't';l and G. ksapirlo- Ct?]”r(‘jecg;fpg‘e dtﬁamnlp'g
. - . and pre-image problems in kernel methods. pages 1-8,
eigenmodes or using a more complicated shape method 5,7

[21], however this would increase the computational cos{2] A. Blake and M. Isard Active Contours Springer Verlag, 1998.
of the algorithm and possibly also the size of the training[3] R. Brockett and A. Blake. Estimating the shape of a moving

. . . contour. InCDC, pages 3247-3251, 1994.
set. The deformotion-based technique uses an averagi 9 V. Caselles, R. Kimmel, and G. Sapiro. Geodesic activetaars.

procedure on the shape, due to a static model on the shape International Journal of Computer Visiori3:5-22, 1997.
dynamics, and is unable to efficiently capture fast shapdd] G. Charpiat, O. Faugeras, R. Keriven, and P. Maurel. &bis¢-

. . based shape statistics. IBASSP pages 925-928, 2006.
deformations (See Figure 2 and Table ”'b)' [6] D. Cremers. Dynamical statistical shape priors for leset-based

The quantitative comparison of the methods is given tracking. IEEE Transactions on Pattern Analysis and Machine
in Table 1. The performance metrics should be examined__ Intelligence 28:1262-1273, 2006.

ble si th te diff t ts of \}é] S. Dambreville, Y. Rathi, and A. Tannenbaum. Trackinpdmable
as an ensemble since [ney rate diierent aspects or cur objects with unscented Kalman filtering and geometric action-

tracking performance. The Bayesian observer performs as tours. InACC, pages 2856-2861, 2006.
well as the other techniques when there is no perturbatioff] S- Haker, G. Sapiro, A. Tannenbaum, and D. Washburn. idiss

. tracking using knowledge-based adaptive thresholdingcking of
(see average error). When perturbations occur and the pigh speed projectiles. IICIP, pages 786-789, 2001.

measurements become unreliable, the observer can attejot G.E. Healey and R. Kondepudy. Radiometric CCD cameribreal

uate the measurement perturbations (low maximum errors tion and noise estimationlEEE Transactions on Pattern Analysis
in Table I1). O Il the B . b d trat and Machine Intelligencel6(3):267-276, 1994.
In faole ) verall, theé bayesian observer demonstra Ef§0] B. Horn and B. Schunck. Determining optical flowArtificial

good temporal consistency in the target contour, given the  Intelligence 17:185-203, 1981.

quality of the measurements. The technique is also able g1 J.D. Jackson, A.J. Yezzi, and S. Soatto. Tracking deéirie
handle hiahl iable sh def . moving objects under severe occlusions. GDC, pages 2990—
andle highly variable shape deformations. 2005 2004.
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TABLE Il
COMPARATIVE PERFORMANCES USING OBJECTIVE MEASURES OF QUATY.

(a) Sequence 1

Metric / Algorithm Bayesian AC Deformotion| Shape Observer
Trackpt error (L2/Loo) 1.8/4.4 141739 12/34 3.0/105 12/44
NMP (avg/max) 129/ 242 91 /160 116/ 211 105 / 199 90 / 155
Hausdorff (avg/max) 6.2/13.5 45/95 4.0/6.7 39/7.7 35/6.6
Sobolev (avg/max) 3.2/10.5 24/6.9 15/36 15/54 1.2/33
# Frames tracked 180 180 180 180 180

(b) Sequence 2

Metric / Algorithm Bayesian AC Deformotion| Shape Observer
Trackpt error (L2/Loo) 8.6 /13.2 28170 26/123 5.6/15.8 271538
NMP (avg/max) 251 / 969 244 | 549 248/ 769 575/ 833 2791 478
Hausdorff (avg/max) 10.9/18.4 11.1/19.2 12.3/19.7 12.0/22.5 14.6 /20.7
Sobolev (avg/max) 8.2/52.9 12.9/95.8 11.9/46.7 13.2/43.9 12.9/26.9
# Frames tracked 477 478 477 475 478

(c) Sequence 3

Metric / Algorithm Bayesian AC Deformotion| Shape Observer
Trackpt error (Lo /Loo) 16.6/24.4 1154523 7.91/16.0 5417123 8.0/15.5
NMP (avg/max) 253/1420 ] 202 / 755 299 / 536 171 / 508
Hausdorff (avg/max) 10.2/35.0 20.0+4== 7.8126.2 10.9/25.8 7.7127.4
Sobolev (avg/max) 8.2/70.6 100-04-ec 5.8/35.3 11.7/38.1 6.5/81.8
# Frames tracked 200 150 200 200 200

(d) Sequence 3 with observer using measurements from Graplar@ Active Contour segmentations

Metric / Algorithm Observer with AC Graph Cut Observer with Graph
measurements Cut measurements
Trackpt error (La/Loo) 6.5/22.1 7.91/31.1 6.9/27.4
NMP (avg/max) 192 / 663 288/ 1014 219 / 457
Mean Laplace (avg/max) 8.3/25.4 12.8/32.0 11.7 /1 25.9
Max Laplace (avg/max) 6.2 /35.8 8.3/70.8 10.2/ 80.1
# Frames tracked 200 200 200




