Optimal Estimation Applied to Visual Contour
Tracking

Ibrahima J. Ndiour and Patricio A. Vela
School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0250

Abstract— This paper derives an optimal estimator for sen by the external user based on a subjective perception
the purpose of online visual contour tracking. Starting from  of visual perturbations in the sequence of images.
Bayesian segmentation as the measurement strategy, we use Thig paper proposes the derivation of an optimal esti-

a bottom-up approach to design the estimator. In particular tor f i ) | t tracki Instead of a t
it is shown that additive imaging noise leads to multiplicaive mator tor online visual contour tracking. Instead or a top-

segmentation uncertainty from which a geometric averaging down approach, we utilize a bottom-up approach starting
update model is established. Given known noise statistiche  from the definition of the measurement strategy, then
optimal correction gain and associated filtering equationsre  consider the effects of noise. Bayesian segmentation [6]
derived. The optimal estimator is applied to noise-corruped g chosen as the measurement process. In this setting, the
imagery and its performance compared against a fixed-gain oo o ) -
filtering strategy and other visual tracking techniques. pontour encircling the tar_get IS g'Ve_n !mpIICItIy as tﬁié%
iso-contour of a scalar field describing at each pixel the
probability that said pixel belongs to the foreground. We
examine how the hypothesis of additive imaging noise
This work considers the problem of accurate contouraffects the classification probabilities, infer the proper
based tracking in the presence of perturbations causa@date law to be applied under such hypothesis, and derive
by imaging noise. Given a sequence of corrupted imageise resulting optimal filtering scheme. Benefits of this ap-
{l,I5,... : & — R}, performing a series of indi- proach include the simplification of a filtering problem on
vidual segmentations generates noisy, incorrect contothie infinite-dimensional space of closed curves into a serie
measurements that may lead, over time, to loss of trackf point-wise filtering tasks. Also, this framework allows
Typical solutions to the problem of noise uncertaintthe computation of the optimal gain, given knowledge of
include filtering the image data prior to performing visuakhe uncertainty level on the image data, e.g. the noise
tracking, enforcing shape constraints [2] or consideringariance. Principal contributions of the work include)
more complex segmentation algorithms [5], [17]. the formulation of the visual tracking task as a bottom-up
Another class of solutions is given by estimation techfiltering design problem(2) the derivation of an optimal
niques. Often, these approaches formalize the problefiter, and (3) the quantitative validation of the filter’s
as a nonlinear estimation problem, with the intensity operformance.
each pixel being an observation. Most of the related The paper is organized as follows. Section Il describes
techniques use a top-down approach, featured most prorthe contour measurement algorithm. Sections Il and IV
nently in [10], where the general block structure of ardiscuss the filtering design and provide the algorithmic
observer is proposed and each component is subsequentscription for optimal estimation. The experiments are
specified. There are many difficulties associated to theseported in section V. Section VI concludes the paper.
techniques. First, the contour to be estimated resides in an
infinite-dimensional manifold space [8] requiring infinite Il. THE MEASUREMENT STRATEGY
dimensional filtering design [7], [9], [11]. This leads in The Bayesian image segmentation algorithm relies on
general to complex filtering design and possibly largstatistical analysis of the image sequence with classifica-
computational cost [14]. The approximation of the shapgon done through anaximum a posteriorapproach; it is
space through PCA methods simplifies the problem [3], bi#ometimes referred to as knowledge-based segmentation.
derived systems are then prone to out-of-sample whenevEne maximum a posterioffiMAP) segmentation algorithm
a shape outside the training set arises during trackingith Bayesian update, as implemented for image process-
Secondly, while the selection of a gain parameter is ofteimg, is an adaptive thresholding algorithm that has found
crucial for the performances, most estimators currentljnuch success in processing and quantizing noise corrupted
proposed require manual gain selection [7], [10] or quarimagery [6].
titative uncertainty levels such as the measurement errorThe Bayesian segmentation algorithm interprets an im-
covariance matrix [3]. Consequently, these are often chage to be the composition of several layers, each of

|. INTRODUCTION



which is described by a class € C from a collection noise. A similar derivation holds for the background clas-
of classes. Each class has associated to it a distributisification densities. Thus, corruption by additive noise on
describing the expected data valuesf the classPr(v|c). the image data results in multiplicative uncertainty fog th
Such distributions, also called likelihoods, are commonljoreground/background likelihoods.
assumed to be Gaussian. Lastly, for each clasthere ) )
is ana priori probability of a pixelr being assigned to B+ The geometric averaging update model
that particular clas®r(c(r) = ¢). The Bayesian classifier =~ We are now interested by the estimation problem of
selects the most likely class for a given pixel based on the process given measurements with multiplicative noise.
probabilityPr(c(r) = ¢|v(r) = v) that a given pixel value Consider a statg € (0, 1) to be estimated, given a collec-
v(r) is associated to the class. Classification probabilitiegon of measurements. The measurements are corrupted
are obtained using Bayes’ rule by multiplicative noise, i.e¢ = p - n. A recursive filter
Pr(v: — vle: — o following a predictor-corrector structure is proposedeTh
r(v; = vle; = ¢) Pr(e; = ¢) - oo

= S Pr(0; = v]c = 1) Pr(c; = ) pred|ctlpn step of t_he filtering schgme can be clhosen to

Y ! ‘ ! be static (propagation of the previous state estimate) or
The 50% probability contour associated with the targedynamic given prior knowledge of the state evolution. The
class generates the segmentation. For more details opdate step of the filtering is described by:
Bayesian segmentation, we refer to [6]. . V- K %

pr=0p") Q"

1. OPTIMAL OBSERVERDESIGN _ ) S )
In this section, we provide the derivation of an optimaIThe previous gpdate equation can bg justified by consid-
. ! : . ering the logarithm of the expression:
estimator for visual tracking. First, we show that corrup-
tion by additive imaging noise results in multiplicative log(pt) = (1 — K) -log(p~) + K -1og(¢).
uncertainty for the contour measurements when Bayesian . ) ] i
segmentation is used. The use of a geometric averagifgarranging the terms of the previous equation yields:
update model is then justified in this context of filtering Ay i . _ -
with multiplicative noise. Subsequently, the noise stigss log(p™) = log(p™) + K [log(() log(p )] ’
are estimated and the filtering equations and optimal gaishich is the standard linear approach to filtering. The
are derived. combination of the geometric averaging update model with

o . . L a prediction model and the Bayesian segmentation as a

A. _From add|t_|ve imaging noise to multiplicative SEIMeNmeasurement strategy results in a recursive filter estimati
tation uncertainty the likelihood that a pixel belong to a given class. The

Consider an imagd defined over a compact domainfiltering applies to both the foreground and background.
of the plane and taking values . Further, assume that

measurement of the pixel intensities has been corrupted y Noise statistics estimation

additive Gaussian noisewith zero mean and varianeé. In the log-space associated to the likelihoods, the fore-
Classification is performed through Bayesian segmentati ound measurement noise has meaé oy 2_ The
[6] with two classes: foreground and background. The tw . . . IF .
classes are modelled with a Gaussian distribution for thoarameteroF is known, being defined by the Gaussian

pixel intensities. Assuming uniform priors and a normaEelStribUtion used to model the foreground intensity distri
distribution N(,UIF o2) for the foreground pixels, then ution during the segmentation measurement. The variance

R ; of the imaging noiser,, can be estimated prior to visual
the mea_s_ured likelihood for_ th? corrupted pixl) 1o tracking, see [12] and references therein. Given knowledge
be classified as foreground is given by:

of the quantititesr,, ando -, centering of the measurQement
(P +v(r)—p 2 . . .
Cp(r) = \/3.6*%(41 T ’F) , noise is done by adding the constant fac <;’—F) to
. the measurements in the log-space, which corresponds
"o multiply2ing the measured segmentation probabilities

Pr(c; = cjv; =)

for the measured likelihood can be expanded further: N LV)
by e2\°r/ . The foreground measurement noise is now

1 (Im=np\? 1 um)? ,(52452:2)) _
Cr(r) = Vae §(Moee)® —3(42)’ ) _ expressed as:

(1) WP (em)? (MU k)
which can be rewritten as np = S(3) (5P L, ( 2 )

Cr(r) = Pp(r) -n(r;pur,or), Using the independence of the imaging naiséom the
imagel, the correlation between the foreground likelihood

where Pr(r) consisting of the first two terms from (1) is and measurement noise vanishes:

the true classification likelihood, andr; pur, o) consist-
ing of the remaining two terms is the class measurement S = E (log (Pr) - log (nr)) = 0.



Similarly, the second order moment of the foregroundovarianceP~ is then given by:
measurement noise is given by: B s
Py = ([log(pr) — log(5; )]

R = 5 ([1og(pr-1) — log(p}_y) — log()] )
-1 (2) +3 (&) = 2 ([log(px—1) — log(pf)]*) + E (log(n))*)
+E<(ﬁ 2>.E<(I(T)_MF)2> =P, +Q

or or where@ = E [log(T)]Q). These prediction and update

2 2 . . . . .
1 /0o, E v(r) calculations complete the derivation of the filtering equa-
’ tions for the system (see Table I).

Since I(T()TA and v(r) follow normal distributions - TABLE I
./\/( ) andN(O o ) respectlvely, we obtain: ILTERING EQUATIONS FOR VISUAL TRACKING
4 2 o At
1 v v . = _
R=_ (U—) + (U—> . Prediction pf“ p’f !
2 \op oF P = p}j—_l +Q
The momentR is a function of the ratioZ-. A similar Ky =P (P + R)fl
analysis is valid for the background measurement noise . 1K
Update pe=() TG
D. Gain computation Pf=(1- Kp)? Pr+ K2R

Assume a static prediction model with multiplicative
process noise, i.e. (5, = p;_, - 7x) With p € {Pp, Pg}.
The objective is to find the optimal value of the gain V. ALGORITHM AND IMPLEMENTATION
K that minimizes the mean squared logarithmic error Based on the description of the design, the optimal
E ([bg( ) —log(p™)] ) This is a measure of the accu-estimation algorithm can be summarized as follows:

racy of the estimatg*, it is denotedP: « Estimate the additive imaging noise prior to the visual

R s tracking process.

Pt =E ([bg(P) —log(p™)] ) « For every pixel, run two filters to estimate the
B A_ 2 foreground and background likelihood#(r) and
=F (log(p) —log(p™) — K - [log(¢) —log(p™)] ) . Pu(r)):

Given the setup, in the log-space associated to the likeli- 1) at the prediction step, run the corresponding

hoods, the problem considered is one of point-wise linear equations in Table I to obtain the predictions.

filtering for a system facing additive noise. Thus, the 2) obtain a measurement by taking the classifica-
optimal selection of the gailk is given by the Kalman tion likelihood given by Bayesian segmentation
gain [16]: K = P~ (P~ + R)~! . on the current image.

3) at the update step, run the corresponding equa-
tions in Table | to obtain the updates.
o The estimated classification probability field is ob-
tained by normalizing the likelihood estimates pre-
viously obtained: PFP . The 50% contour of this
probability field defines the bounding contour of the

E. Filtering equations

In addition to computing the gain, the error variaree
needs to be estimated at the prediction step and updated
at the correction step. These updates are computed using
the state estimate update:

target.
Pt =FE ([log(p) — log(p”’)f) _ The implementation of the algorithm follows the algo-
) rithmic steps just described. Given the typically smalesiz
=k ([log(ﬂ) — (1= K)log(p™) — K log(¢)] ) of the target relatively to the image dimensions, windowing

- 2 can be used in order to speed up the technique. In that case,
=F ([(1 — K) [log(p) —log(p™)] — K log(n)] ) a localization procedure [1], [4], [18] should be applied
=(1- K)2 P+ K?R. prior to performing segmentation measurements. Such a

localization procedure guarantees that the prediction and

Assume the process noise to be independent from measurement are described in a consistent coordinate

both the process and the observation noise. The predictedme, i.e. prediction and measurement are aligned.



V. EXPERIMENTS AND RESULTS point-wise filtering problems. The optimal gain derivation

This section describes the experiments used to test tﬁeformally tied to quantitative uncertainty. levels of the.
validity of the estimator design. Manual segmentation i{nage data and, therefore, does not require manual gain
performed on the sequences of images to provide grouffi¢ing- The resulting optimal estimator is able to handle
truth. To assess the performance, the number of misclai€Vere noise perturbations, and compares favorably with

sified pixels (NMP) is used as a quantitative metric.
1) Optimality: This experiment is designed to verify

other estimation-based tracking techniques.
Future work will seek to extend this analysis to color

the optimality of the gain. From an original high_SNRsequences and enforce spatial consistency through the use
infra-red sequence of images, we generated multiple noisat distributed filtering methods [13].

corrupted sequences. The noise variancef the additive
imaging noiseN (0, c2) is controlled to vary betweens o
and 100. Figure 1(a-c) depicts a sample image from the
original sequence and the corrupted sample image at noise
levelso, = 25 ando, = 100 respectively. All sequences [&
are then tracked using the geometric filtering method with
constant gains. Subsequently, the optimal filtering methodB]
is applied to the sequences. For these experiments and
those following, we used the valu@ = 0.3 for the
prediction noise covariance. The results are reported ity
Figure 1; they show that the best performance is indeed
obtained when the optimal gain is used. In presence of
severe noise, fixed low-gain filtering strategies have close[5]
performance to the optimal estimator and vice-versa.

2) Comparative performanceTracking experiments g
were also conducted to compare the performance of the
estimator with other standard tracking techniques. We used
the Bayesian segmentation [6], an active contour trackingy
technique [15] and the filtering method described in [7]. In
the following, these methods are labelled respectively a
Bayesian, AC and Deformotion filter. The gain parameter
of the Deformotion filter were chosen to the best of
our understanding. Similarly, the smoothing term of the[g]
active contour was chosen to provide the best segmentation
possible. All tracking techniques were applied to one
noise-corrupted IR sequence,(= 50) and the results [0
obtained were compared to the optimal estimator using
the NMP. For this test sequence, the foreground and badki]
ground were modelled using the respective distributions
N(/LF, O’%) and ./\/(/J,B, 023) with (/LF, O'F) = (202, 68) [12]
and (up,op) = (103,85). The parametes, is equal to
50. The experiment was repeated with a real-life nois
aquarium sequence. A similar modelling was used but
with the set of parametergur,or) = (30,14) and
(up,op) = (68,11). The parameter, is estimated to 25.
The results are depicted in Figure 2. They clearly indicate
that the optimal filtering strategy is a competitive traekin [15]
technique.

8]

3]

[14]

VI. CONCLUSION [16]

This paper presented the derivation of an optimal esthﬂ
mator for online visual contour tracking. In contrast to
the prevailing methods using a top-down approach, we
employ a bottom-up approach starting from the measurg,
ment strategy. In this framework, filtering on the infinite-
dimensional space of closed curves is reduced to a series of
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Fig. 1. Quantitative assessment of optimality. On top, Bgudepict corruption of the original sample with two levefsnoise. The next two rows
show sample estimates obtained using the filtering schenteprédetermined values of the gain and the optimal gain. Réwcompares the number
of misclassified pixels for predetermined choices of thengaith the optimal filtering strategy. The bottom figure des the mean number of
misclassified pixels (NMP) for different levels of noise adifferent configurations of the gain.
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Fig. 2. Quantitative assessment of performance. On toprefigdepict samples from the two test sequences. The nex tbves show sample
estimates obtained using the optimal filtering scheme ahnelr dtacking techniques (active contour estimates ardasinu the Bayesian segmentation
estimates). The bottom figures compare the performanceachf 'echnique using a quantitative metric (the number otlassified pixels).



