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Abstract— This paper derives an optimal estimator for
the purpose of online visual contour tracking. Starting from
Bayesian segmentation as the measurement strategy, we use
a bottom-up approach to design the estimator. In particular,
it is shown that additive imaging noise leads to multiplicative
segmentation uncertainty from which a geometric averaging
update model is established. Given known noise statistics,the
optimal correction gain and associated filtering equationsare
derived. The optimal estimator is applied to noise-corrupted
imagery and its performance compared against a fixed-gain
filtering strategy and other visual tracking techniques.

I. I NTRODUCTION

This work considers the problem of accurate contour-
based tracking in the presence of perturbations caused
by imaging noise. Given a sequence of corrupted images
{I1, I2, ... : Ω 7−→ R}, performing a series of indi-
vidual segmentations generates noisy, incorrect contour
measurements that may lead, over time, to loss of track.
Typical solutions to the problem of noise uncertainty
include filtering the image data prior to performing visual
tracking, enforcing shape constraints [2] or considering
more complex segmentation algorithms [5], [17].

Another class of solutions is given by estimation tech-
niques. Often, these approaches formalize the problem
as a nonlinear estimation problem, with the intensity of
each pixel being an observation. Most of the related
techniques use a top-down approach, featured most promi-
nently in [10], where the general block structure of an
observer is proposed and each component is subsequently
specified. There are many difficulties associated to these
techniques. First, the contour to be estimated resides in an
infinite-dimensional manifold space [8] requiring infinite-
dimensional filtering design [7], [9], [11]. This leads in
general to complex filtering design and possibly large
computational cost [14]. The approximation of the shape
space through PCA methods simplifies the problem [3], but
derived systems are then prone to out-of-sample whenever
a shape outside the training set arises during tracking.
Secondly, while the selection of a gain parameter is often
crucial for the performances, most estimators currently
proposed require manual gain selection [7], [10] or quan-
titative uncertainty levels such as the measurement error
covariance matrix [3]. Consequently, these are often cho-

sen by the external user based on a subjective perception
of visual perturbations in the sequence of images.

This paper proposes the derivation of an optimal esti-
mator for online visual contour tracking. Instead of a top-
down approach, we utilize a bottom-up approach starting
from the definition of the measurement strategy, then
consider the effects of noise. Bayesian segmentation [6]
is chosen as the measurement process. In this setting, the
contour encircling the target is given implicitly as the50%
iso-contour of a scalar field describing at each pixel the
probability that said pixel belongs to the foreground. We
examine how the hypothesis of additive imaging noise
affects the classification probabilities, infer the proper
update law to be applied under such hypothesis, and derive
the resulting optimal filtering scheme. Benefits of this ap-
proach include the simplification of a filtering problem on
the infinite-dimensional space of closed curves into a series
of point-wise filtering tasks. Also, this framework allows
the computation of the optimal gain, given knowledge of
the uncertainty level on the image data, e.g. the noise
variance. Principal contributions of the work include:(1)
the formulation of the visual tracking task as a bottom-up
filtering design problem,(2) the derivation of an optimal
filter, and (3) the quantitative validation of the filter’s
performance.

The paper is organized as follows. Section II describes
the contour measurement algorithm. Sections III and IV
discuss the filtering design and provide the algorithmic
description for optimal estimation. The experiments are
reported in section V. Section VI concludes the paper.

II. T HE MEASUREMENT STRATEGY

The Bayesian image segmentation algorithm relies on
statistical analysis of the image sequence with classifica-
tion done through amaximum a posterioriapproach; it is
sometimes referred to as knowledge-based segmentation.
Themaximum a posteriori(MAP) segmentation algorithm
with Bayesian update, as implemented for image process-
ing, is an adaptive thresholding algorithm that has found
much success in processing and quantizing noise corrupted
imagery [6].

The Bayesian segmentation algorithm interprets an im-
age to be the composition of several layers, each of



which is described by a classc ∈ C from a collection
of classes. Each class has associated to it a distribution
describing the expected data valuesv of the class,Pr(v|c).
Such distributions, also called likelihoods, are commonly
assumed to be Gaussian. Lastly, for each classc, there
is an a priori probability of a pixelr being assigned to
that particular classPr(c(r) = c). The Bayesian classifier
selects the most likely class for a given pixel based on the
probabilityPr(c(r) = c | v(r) = v) that a given pixel value
v(r) is associated to the class. Classification probabilities
are obtained using Bayes’ rule

Pr(ci = c|vi = v) =
Pr(vi = v|ci = c) Pr(ci = c)

∑

γ Pr(vi = v|ci = γ) Pr(ci = γ)
.

The 50% probability contour associated with the target
class generates the segmentation. For more details on
Bayesian segmentation, we refer to [6].

III. O PTIMAL OBSERVERDESIGN

In this section, we provide the derivation of an optimal
estimator for visual tracking. First, we show that corrup-
tion by additive imaging noise results in multiplicative
uncertainty for the contour measurements when Bayesian
segmentation is used. The use of a geometric averaging
update model is then justified in this context of filtering
with multiplicative noise. Subsequently, the noise statistics
are estimated and the filtering equations and optimal gain
are derived.

A. From additive imaging noise to multiplicative segmen-
tation uncertainty

Consider an imageI defined over a compact domain
of the plane and taking values inR. Further, assume that
measurement of the pixel intensities has been corrupted by
additive Gaussian noiseν with zero mean and varianceσ2

ν .
Classification is performed through Bayesian segmentation
[6] with two classes: foreground and background. The two
classes are modelled with a Gaussian distribution for the
pixel intensities. Assuming uniform priors and a normal
distribution N (µF , σ2

F ) for the foreground pixels, then
the measured likelihood for the corrupted pixelI(r) to
be classified as foreground is given by:

ζF (r) =
√

δ · e−
1
2

(

I(r)+ν(r)−µF
σF

)2

,

whereδ is a positive normalizing factor. The expression
for the measured likelihood can be expanded further:

ζF (r) =
√

δ·e−
1
2

(

I(r)−µF
σF

)2

·e−
1
2

(

ν(r)
σF

)2

·e−
(

ν(r) (I(r)−µF )
σ2

F

)

,

(1)
which can be rewritten as

ζF (r) = PF (r) · η(r; µF , σF ),

wherePF (r) consisting of the first two terms from (1) is
the true classification likelihood, andη(r; µF , σF ) consist-
ing of the remaining two terms is the class measurement

noise. A similar derivation holds for the background clas-
sification densities. Thus, corruption by additive noise on
the image data results in multiplicative uncertainty for the
foreground/background likelihoods.

B. The geometric averaging update model

We are now interested by the estimation problem of
a process given measurements with multiplicative noise.
Consider a stateρ ∈ (0, 1) to be estimated, given a collec-
tion of measurementsζ. The measurements are corrupted
by multiplicative noise, i.e.ζ = ρ · η. A recursive filter
following a predictor-corrector structure is proposed. The
prediction step of the filtering scheme can be chosen to
be static (propagation of the previous state estimate) or
dynamic given prior knowledge of the state evolution. The
update step of the filtering is described by:

ρ̂+ =
(

ρ̂−
)1−K · (ζ)

K
.

The previous update equation can be justified by consid-
ering the logarithm of the expression:

log(ρ̂+) = (1 − K) · log(ρ̂−) + K · log(ζ).

Rearranging the terms of the previous equation yields:

log(ρ̂+) = log(ρ̂−) + K ·
[

log(ζ) − log(ρ−)
]

,

which is the standard linear approach to filtering. The
combination of the geometric averaging update model with
a prediction model and the Bayesian segmentation as a
measurement strategy results in a recursive filter estimating
the likelihood that a pixel belong to a given class. The
filtering applies to both the foreground and background.

C. Noise statistics estimation

In the log-space associated to the likelihoods, the fore-

ground measurement noise has mean− 1
2

(

σν

σF

)2

. The
parameterσF is known, being defined by the Gaussian
distribution used to model the foreground intensity distri-
bution during the segmentation measurement. The variance
of the imaging noiseσν can be estimated prior to visual
tracking, see [12] and references therein. Given knowledge
of the quantititesσν andσF , centering of the measurement

noise is done by adding the constant factor1
2

(

σν

σF

)2

to
the measurements in the log-space, which corresponds
to multiplying the measured segmentation probabilities

by e
1
2

(

σν
σF

)2

. The foreground measurement noise is now
expressed as:

ηF = e
1
2

(

σν
σF

)2

· e−
1
2

(

ν(r)
σF

)2

· e−
(

ν(r) (I(r)−µF )
σ2

F

)

.

Using the independence of the imaging noiseν from the
imageI, the correlation between the foreground likelihood
and measurement noise vanishes:

S = E (log (PF ) · log (ηF )) = 0.



Similarly, the second order moment of the foreground
measurement noise is given by:

R = E
(

[log(ηF )]
2
)

=
1

4

(

σν

σF

)4

+
3

4

(

σν

σF

)4

+ E

(

(

ν(r)

σF

)2
)

· E
(

(

I(r) − µF

σF

)2
)

− 1

2

(

σν

σF

)2

E

(

(

ν(r)

σF

)2
)

.

Since I(r)−µF

σF
and ν(r) follow normal distributions

N (0, 1) andN (0, σ2
ν) respectively, we obtain:

R =
1

2

(

σν

σF

)4

+

(

σν

σF

)2

.

The momentR is a function of the ratioσν

σF
. A similar

analysis is valid for the background measurement noise.

D. Gain computation

Assume a static prediction model with multiplicative
process noiseτ , i.e. (ρ̂−k = ρ̂+

k−1 · τk) with ρ ∈ {PF , PB}.
The objective is to find the optimal value of the gain
K that minimizes the mean squared logarithmic error
E
(

[log(ρ) − log(ρ̂+)]
2
)

. This is a measure of the accu-

racy of the estimatêρ+, it is denotedP̂+:

P̂+ = E
(

[

log(ρ) − log(ρ̂+)
]2
)

= E
(

log(ρ) − log(ρ̂−) − K ·
[

log(ζ) − log(ρ̂−)
]2
)

.

Given the setup, in the log-space associated to the likeli-
hoods, the problem considered is one of point-wise linear
filtering for a system facing additive noise. Thus, the
optimal selection of the gainK is given by the Kalman
gain [16]: K = P̂−(P̂− + R)−1 .

E. Filtering equations

In addition to computing the gain, the error varianceP

needs to be estimated at the prediction step and updated
at the correction step. These updates are computed using
the state estimate update:

P̂+ = E
(

[

log(ρ) − log(ρ̂+)
]2
)

= E
(

[

log(ρ) − (1 − K) log(ρ̂−) − K log(ζ)
]2
)

= E
(

[

(1 − K)
[

log(ρ) − log(ρ̂−)
]

− K log(η)
]2
)

= (1 − K)
2

P̂− + K2 R.

Assume the process noiseτ to be independent from
both the process and the observation noise. The predicted

covarianceP̂− is then given by:

P−

k = E
(

[

log(ρk) − log(ρ̂−k )
]2
)

= E
(

[

log(ρk−1) − log(ρ̂+
k−1) − log(τk)

]2
)

= E
(

[

log(ρk−1) − log(ρ̂+
k−1)

]2
)

+ E
(

[log(τk)]
2
)

= P+
k−1 + Q,

whereQ = E
(

[log(τ)]
2
)

. These prediction and update
calculations complete the derivation of the filtering equa-
tions for the system (see Table I).

TABLE I

FILTERING EQUATIONS FOR VISUAL TRACKING

Prediction

{

ρ̂−k = ρ̂+
k−1

P̂−

k = P̂+
k−1 + Q

Update















Kk = P̂−

k (P̂−

k + R)−1

ρ̂+
k =

(

ρ̂−k
)1−Kk · (ζk)

Kk

P̂+
k = (1 − Kk)

2
P̂−

k + K2
k R

IV. A LGORITHM AND IMPLEMENTATION

Based on the description of the design, the optimal
estimation algorithm can be summarized as follows:

• Estimate the additive imaging noise prior to the visual
tracking process.

• For every pixel, run two filters to estimate the
foreground and background likelihoods (P̂F (r) and
P̂B(r)):

1) at the prediction step, run the corresponding
equations in Table I to obtain the predictions.

2) obtain a measurement by taking the classifica-
tion likelihood given by Bayesian segmentation
on the current image.

3) at the update step, run the corresponding equa-
tions in Table I to obtain the updates.

• The estimated classification probability field is ob-
tained by normalizing the likelihood estimates pre-
viously obtained: P̂F

P̂F +P̂B

. The 50% contour of this
probability field defines the bounding contour of the
target.

The implementation of the algorithm follows the algo-
rithmic steps just described. Given the typically small size
of the target relatively to the image dimensions, windowing
can be used in order to speed up the technique. In that case,
a localization procedure [1], [4], [18] should be applied
prior to performing segmentation measurements. Such a
localization procedure guarantees that the prediction and
measurement are described in a consistent coordinate
frame, i.e. prediction and measurement are aligned.



V. EXPERIMENTS AND RESULTS

This section describes the experiments used to test the
validity of the estimator design. Manual segmentation is
performed on the sequences of images to provide ground
truth. To assess the performance, the number of misclas-
sified pixels (NMP) is used as a quantitative metric.

1) Optimality: This experiment is designed to verify
the optimality of the gain. From an original high-SNR
infra-red sequence of images, we generated multiple noise-
corrupted sequences. The noise varianceσν of the additive
imaging noiseN (0, σ2

ν) is controlled to vary between25
and 100. Figure 1(a-c) depicts a sample image from the
original sequence and the corrupted sample image at noise
levelsσν = 25 andσν = 100 respectively. All sequences
are then tracked using the geometric filtering method with
constant gains. Subsequently, the optimal filtering method
is applied to the sequences. For these experiments and
those following, we used the valueQ = 0.3 for the
prediction noise covariance. The results are reported in
Figure 1; they show that the best performance is indeed
obtained when the optimal gain is used. In presence of
severe noise, fixed low-gain filtering strategies have closer
performance to the optimal estimator and vice-versa.

2) Comparative performance:Tracking experiments
were also conducted to compare the performance of the
estimator with other standard tracking techniques. We used
the Bayesian segmentation [6], an active contour tracking
technique [15] and the filtering method described in [7]. In
the following, these methods are labelled respectively as
Bayesian, AC and Deformotion filter. The gain parameters
of the Deformotion filter were chosen to the best of
our understanding. Similarly, the smoothing term of the
active contour was chosen to provide the best segmentation
possible. All tracking techniques were applied to one
noise-corrupted IR sequence (σν = 50) and the results
obtained were compared to the optimal estimator using
the NMP. For this test sequence, the foreground and back-
ground were modelled using the respective distributions
N (µF , σ2

F ) and N (µB, σ2
B) with (µF , σF ) = (202, 68)

and (µB, σB) = (103, 85). The parameterσν is equal to
50. The experiment was repeated with a real-life noisy
aquarium sequence. A similar modelling was used but
with the set of parameters(µF , σF ) = (30, 14) and
(µB, σB) = (68, 11). The parameterσν is estimated to 25.
The results are depicted in Figure 2. They clearly indicate
that the optimal filtering strategy is a competitive tracking
technique.

VI. CONCLUSION

This paper presented the derivation of an optimal esti-
mator for online visual contour tracking. In contrast to
the prevailing methods using a top-down approach, we
employ a bottom-up approach starting from the measure-
ment strategy. In this framework, filtering on the infinite-
dimensional space of closed curves is reduced to a series of

point-wise filtering problems. The optimal gain derivation
is formally tied to quantitative uncertainty levels of the
image data and, therefore, does not require manual gain
tuning. The resulting optimal estimator is able to handle
severe noise perturbations, and compares favorably with
other estimation-based tracking techniques.

Future work will seek to extend this analysis to color
sequences and enforce spatial consistency through the use
of distributed filtering methods [13].
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(a) Original IR sequence (b) Noise-corrupted IR (σν = 25) (c) Noise-corrupted IR (σν = 100)
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(j) K = 0.1, σν = 100
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(k) K = optimal, σν = 100
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(l) NMP error vs. time for a given noise level (σν = 25)

0 20 40 60 80 100 120 140 160 180
40

60

80

100

120

140

160

 

 
Gain K = 1
Gain K = 0.7
Gain K = 0.5
Gain K = 0.3
Gain K = 0.1
Optimal Gain

(m) NMP error vs. time for a given noise level (σν = 100)
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Fig. 1. Quantitative assessment of optimality. On top, figures depict corruption of the original sample with two levels of noise. The next two rows
show sample estimates obtained using the filtering scheme with predetermined values of the gain and the optimal gain. Row# 4 compares the number
of misclassified pixels for predetermined choices of the gain with the optimal filtering strategy. The bottom figure displays the mean number of
misclassified pixels (NMP) for different levels of noise anddifferent configurations of the gain.



(a) IR sequence (b) Fish sequence
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(k) NMP error vs. time for test algorithms on IR sequence
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(l) NMP error vs. time for test algorithms on fish sequence

Fig. 2. Quantitative assessment of performance. On top, figures depict samples from the two test sequences. The next three rows show sample
estimates obtained using the optimal filtering scheme and other tracking techniques (active contour estimates are similar to the Bayesian segmentation
estimates). The bottom figures compare the performances of each technique using a quantitative metric (the number of misclassified pixels).


